Citation: Wen Jiang,  Jieli Lin,  Zhongshu Li. 低配位含磷官能团的研究进展[J]. University Chemistry, ;2025, 40(8): 138-151. doi: 10.12461/PKU.DXHX202409144 shu

低配位含磷官能团的研究进展

  • Corresponding author: Zhongshu Li, lizhsh6@mail.sysu.edu.cn
  • Received Date: 30 September 2024
    Revised Date: 26 December 2024

  • 官能团是分子组成的重要构筑基元,决定着分子的物理化学性质。对官能团的结构、性质和功能的研究是合成化学最核心的内容,进而构筑了现代合成化学的理论体系。在“发现和创造新物质”这一化学学科核心工作中,设计和开发新型官能团尤为重要。随着合成技术的进步,逐渐出现了一些含P、B、S、Si等新型官能团的报道。基于对角线规则,含磷官能团可能会表现出类似含碳官能团的性质。同时,磷元素的引入还将进一步调节官能团的位阻和电子性质,从而展现出其独特的物理化学性质和应用潜力。本文综述了近年来低配位含磷官能团,如磷炔、双磷分子、磷宾、磷烯、双磷烯、磷杂苯等的研究进展,并对该领域未来的发展方向进行展望。
  • 加载中
    1. [1]

      Xu, G.; Senanayake, C. H.; Tang, W. Acc. Chem. Res. 2019, 52, 1101.

    2. [2]

      Kutzelnigg, W. Angew. Chem. Int. Ed. Engl. 1984, 23, 272.

    3. [3]

      Dillon, K. B.; Mathey, F.; Nixon, J. F. Phosphorus: The Carbon Copy: From Organophosphorus to Phospha-organic Chemistry; Wiley: West Sussex, UK, 1998.

    4. [4]

      Mathey, F.; Duan, Z. Sci. Sin. Chim. 2010, 40, 888.

    5. [5]

      Laurent, J. C. T. R. B.-S.; King, M. A.; Kroto, H. W.; Nixon, J. F.; Suffolk, R. J. J. Chem. Soc. Dalton Trans. 1983, 755.

    6. [6]

      Bani-Fwaz, M. Z. J. Coord. Chem. 2020, 73, 887.

    7. [7]

      Chirila, A.; Wolf, R.; Chris Slootweg, J.; Lammertsma, K. Coord. Chem. Rev. 2014, 270–271, 57.

    8. [8]

      Gier, T. E. J. Am. Chem. Soc. 1961, 83, 1769.

    9. [9]

      Hopkinson, M. J.; Kroto, H. W.; Nixon, J. F.; Simmons, N. P. C. J. Chem. Soc. Chem. Commun. 1976, 513.

    10. [10]

      Regitz, M. Chem. Rev. 1990, 90, 191.

    11. [11]

      Becker, G.; Gresser, G.; Uhl, W. Z. Naturforsch. B 1981, 36, 16.

    12. [12]

      Markl, G.; Sejpka, H. Tetrahedron Lett. 1985, 26, 5507.

    13. [13]

      Laurent, J. C. T. R. B. S.; Cooper, T. A.; Kroto, H. W.; Nixon, J. F.; Ohashi, O.; Ohno, K. J. Mol. Struct. 1982, 79, 215.

    14. [14]

      Kroto, H. W.; Nixon, J. F.; Simmons, N. P. C. J. Mol. Spectrosc. 1980, 82, 185.

    15. [15]

      Kroto, H. W.; Nixon, J. F.; Simmons, N. P. C. J. Mol. Spectrosc. 1979, 77, 270.

    16. [16]

      Karaghiosoff, K.; Schmidpeter, A. Phosphorus, Sulfur Relat. Elem. 1988, 36, 217.

    17. [17]

      Nixon, J. F. Chem. Rev. 1988, 88, 1327.

    18. [18]

      Guillemin, J.-C.; Janati, T.; Denis, J.-M. J. Org. Chem. 2001, 66, 7864.

    19. [19]

      Transue, W. J.; Yang, J.; Nava, M.; Sergeyev, I. V.; Barnum, T. J.; McCarthy, M. C.; Cummins, C. C. J. Am. Chem. Soc. 2018, 140, 17985.

    20. [20]

      Benson, S. W. J. Chem. Educ. 1965, 42, 502.

    21. [21]

      Bock, H.; Mueller, H. Inorg. Chem. 1984, 23, 4365.

    22. [22]

      Piro, N. A.; Figueroa, J. S.; McKellar, J. T.; Cummins, C. C. Science 2006, 313, 1276.

    23. [23]

      Velian, A.; Nava, M.; Temprado, M.; Zhou, Y.; Field, R. W.; Cummins, C. C. J. Am. Chem. Soc. 2014, 136, 13586.

    24. [24]

      Eckhardt, A. K.; Riu, M.-L. Y.; Ye, M.; Müller, P.; Bistoni, G.; Cummins, C. C. Nat. Chem. 2022, 14, 928.

    25. [25]

      Wang, S.; Sears, J. D.; Moore, C. E.; Rheingold, A. L.; Neidig, M. L.; Figueroa, J. S. Science 2022, 375, 1393.

    26. [26]

      Xu, L. T.; Dunning, T. H. J. Chem. Theo. Comput. 2015, 11, 2496.

    27. [27]

      Nesterov, V.; Reiter, D.; Bag, P.; Frisch, P.; Holzner, R.; Porzelt, A.; Inoue S. Chem. Rev. 2018, 118, 9678.

    28. [28]

      Hirai, K.; Itoh, T.; Tomioka, H. Chem. Rev. 2009, 109, 3275.

    29. [29]

      Iwamoto, E.; Hirai, K.; Tomioka, H. J. Am. Chem. Soc. 2003, 125, 14664.

    30. [30]

      Tomioka, H.; Iwamoto, E.; Itakura H.; Hirai, K. Nature 2001, 412, 626.

    31. [31]

      Benkő, Z.; Streubel, R.; Nyulászi, L. Dalton Trans. 2006, 4321.

    32. [32]

      Li, X.; Lei, D.; Chiang, M. Y.; Gaspar, P. P. J. Am. Chem. Soc. 1992, 114, 8526.

    33. [33]

      Li, X.; Weissman, S. I.; Lin, T.-S.; Gaspar, P. P.; Cowley, A. H.; Smirnov, A. I. J. Am. Chem. Soc. 1994, 116, 7899.

    34. [34]

      Akimov, A. V.; Ganushevich, Y. S.; Korchagin, D. V.; Miluykov, V. A.; Misochko, E. Y. Angew. Chem. Int. Ed. 2017, 56, 7944.

    35. [35]

      Nguyen, M. T.; Van Keer, A.; Vanquickenborne, L. G. J. Org. Chem. 1996, 61, 7077.

    36. [36]

      Liu, L.; Ruiz, D. A.; Munz, D.; Bertrand, G. Chem 2016, 1, 147.

    37. [37]

      Luo, Q.; Liu, T.; Huang, L.; Yang, C.; Lu, W. Angew. Chem. Int. Ed. 2024, 63, e202405122.

    38. [38]

      Chen, Y.; Su, P.; Wang, D.; Ke, Z.; Tan, G. Nat. Commun. 2024, 15, 4579.

    39. [39]

      Liu, L. L.; Zhou, J.; Andrews, R.; Stephan, D. W. J. Am. Chem. Soc. 2018, 140, 7466.

    40. [40]

      Riu, M.-L. Y.; Eckhardt, A. K.; Cummins, C. C. J. Am. Chem. Soc. 2022, 144, 7578.

    41. [41]

      Saint-Denis, T. G.; Wheeler, T. A.; Chen, Q.; Balázs, G.; Settineri, N. S.; Scheer, M.; Tilley, T. D. J. Am. Chem. Soc. 2024, 146, 4369.

    42. [42]

      van Eis, M. J.; Zappey, H.; de Kanter, F. J. J.; de Wolf, W. H.; Lammertsma, K.; Bickelhaupt, F. J. Am. Chem. Soc. 2000, 122, 3386.

    43. [43]

      Velian, A.; Cummins, C. C. J. Am. Chem. Soc. 201, 134, 13978.

    44. [44]

      Schmidt, M. W.; Truong, P. N.; Gordon, M. S. J. Am. Chem. Soc. 1987, 109, 5217.

    45. [45]

      Recker, G. Z. Anorg. Allg. Chem. 1976, 423, 242.

    46. [46]

      Ziółkowska, A.; Doroszuk, J.; Ponikiewski, Ł. Organometallics 2023, 42, 505.

    47. [47]

      Klebach, T. C.; Lourens, R.; Bickelhaupt, F. J. Am. Chem. Soc. 1978, 100, 4886.

    48. [48]

      Hibbs, D. E.; Jones, C.; Richards, A. F. J. Chem. Soc. Dalton Trans. 1999, 3531.

    49. [49]

      Romanenko, V.; Ruban, A.; Povolotskii, M.; Polyachenko, L.; Markovskii, L. Zh. Org. Khim. 1986, 56, 1186.

    50. [50]

      Appel, R.; Immenkeppel, M. Z. Anorg. Allg. Chem. 1987, 553, 7.

    51. [51]

      Yam, M.; Chong, J. H.; Tsang, C.-W.; Patrick, B. O.; Lam, A. E.; Gates, D. P. Inorg. Chem. 2006, 45, 5225.

    52. [52]

      Shah, S.; Protasiewicz, J. D. Chem. Commun. 1998, 1585.

    53. [53]

      Breen, T. L.; Stephan, D. W. J. Am. Chem. Soc. 1995, 117, 11914.

    54. [54]

      Masuda, J. D.; Jantunen, K. C.; Ozerov, O. V.; Noonan, K. J. T.; Gates, D. P.; Scott, B. L.; Kiplinger, J. L. J. Am. Chem. Soc. 2008, 130, 2408.

    55. [55]

      Lacombe, S.; Gonbeau, D.; Cabioch, J. L.; Pellerin, B.; Denis, J. M.; Pfister-Guillouzo, G. J. Am. Chem. Soc. 1988, 110, 6964.

    56. [56]

      Weber, L. Eur. J. Inorg. Chem. 2000, 2000, 2425.

    57. [57]

      Meriem, A.; Majoral, J.-P.; Revel, M.; Navech, J. Tetrahedron Lett. 1983, 24, 1975.

    58. [58]

      Köhler, H.; Michaelis, A. Ber. Dtsch. Chem. Ges. 1877, 10, 807.

    59. [59]

      Daly, J. J.; Maier, L. Nature 1964, 203, 1167.

    60. [60]

      Daly, J. J.; Maier, L. Nature 1965, 208, 383.

    61. [61]

      Yoshifuji, M.; Shima, I.; Inamoto, N.; Hirotsu, K.; Higuchi, T. J. Am. Chem. Soc. 1981, 103, 4587.

    62. [62]

      Caminade, A.-M.; Verrier, M.; Ades, C.; Paillous, N.; Koenig, M. J. Chem. Soc. Chem. Commun. 1984, 875.

    63. [63]

      Masaaki, Y.; Takahiro, S.; Naoki, I. Chem. Lett. 1988, 17, 1735.

    64. [64]

      Asami, S.-S.; Okamoto, M.; Suzuki, K.; Yamashita, M. Angew. Chem. Int. Ed. 2016, 55, 12827.

    65. [65]

      Smit, C. N.; van der Knaap, T. A.; Bickelhaupt, F. Tetrahedron Lett. 1983, 24, 2031.

    66. [66]

      Liu, L. L.; Ruiz, D. A.; Dahcheh, F.; Bertrand, G.; Suter, R.; Tondreau, A. M.; Grützmacher, H. Chem. Sci. 2016, 7, 2335.

    67. [67]

      Escudie, J.; Couret, C.; Ranaivonjatovo, H.; Satgé, J. J. Chem. Soc. Chem. Commun. 1984, 1621.

    68. [68]

      Yoshifuji, M.; Shibayama, K.; Inamoto, N.; Matsushita, T.; Nishimoto, K. J. Am. Chem. Soc. 1983, 105, 2495.

    69. [69]

      Doddi, A.; Bockfeld, D.; Zaretzke, M.-K.; Kleeberg, C.; Bannenberg, T.; Tamm, M. Dalton Trans. 2017, 46, 15859.

    70. [70]

      Niecke, E.; Altmeyer, O.; Nieger, M. Angew. Chem. Int. Ed. 1991, 30, 1136.

    71. [71]

      Romanenko, V. D.; Ruban, A. V.; Iksanova, S. V.; Polyachenko, L. K.; Markovski, L. N. Phosphorus, Sulfur Relat. Elem. 1985, 22, 365.

    72. [72]

      Markovski, L. N.; Romanenko, V. D.; Ruban, A. V. Phosphorus, Sulfur Relat. Elem. 1987, 30, 447.

    73. [73]

      Liu, L. L.; Cao, L. L.; Zhou, J.; Stephan, D. W. Angew. Chem. Int. Ed. 2019, 58, 273.

    74. [74]

      Niecke, E.; Kramer, B.; Nieger, M. Angew. Chem. Int. Ed. 1989, 28, 215.

    75. [75]

      Weber, L.; Ebeler, F.; Ghadwal, R. S. Coord. Chem. Rev. 2022, 461, 214499.

    76. [76]

      Lin, J.; Liu, S.; Zhang, J.; Grützmacher, H.; Su, C.-Y.; Li, Z. Chem. Sci. 2023, 14, 10944.

    77. [77]

      Weber, L. Chem. Rev. 1992, 92, 1839.

    78. [78]

      Wong, T. C.; Bartell, L. S. J. Chem. Phys. 1974, 61, 2840.

    79. [79]

      Baldridge, K. K.; Gordon, M. S. J. Am. Chem. Soc. 1988, 110, 4204.

    80. [80]

      Nyulászi, L.; Keglevich, G. Heteroat. Chem. 1994, 5, 131.

    81. [81]

      Zhang, J.; Li, Y.; Liu, S.; Lin, J.; Fan, Y.-N.; Li, Z. Eur. J. Inorg. Chem. 2023, 26, e202300595.

    82. [82]

      Zhang, J.; Hou, Y.; Liu, S.; Lin, J.; Li, Z. Dalton Trans. 2024, 53, 5608.

    83. [83]

      Hou, Y.; Li, Z.; Li, Y.; Liu, P.; Su, C.-Y.; Puschmann, F.; Grützmacher, H. Chem. Sci. 2019, 10, 3168.

    84. [84]

      Chen, X.; Li, Z.; Grützmacher, H. Chem. Eur. J. 2018, 24, 8432.

    85. [85]

      Müller, C.; Broeckx, L. E. E.; de Krom, I.; Weemers, J. J. M. Eur. J. Inorg. Chem. 2013, 2013, 187.

    86. [86]

      Coles, N. T.; Sofie Abels, A.; Leitl, J.; Wolf, R.; Grützmacher, H.; Müller, C. Coord. Chem. Rev. 2021, 433, 213729.

    87. [87]

      Müller, C.; Vogt, D. Phosphorus Compounds: Advanced Tools in Catalysis and Material Sciences; Peruzzini, M., Gonsalvi, L. Eds.; Springer: Dordrecht, Netherlands, 2011; p. 151.

    88. [88]

      Müller, C.; Vogt, D. Dalton Trans. 2007, 5505.

    89. [89]

      Märkl, G. Angew. Chem. Int. Ed. 1966, 5, 846.

    90. [90]

      Carrasco, A. C.; Pidko, E. A.; Masdeu-Bultó, A. M.; Lutz, M.; Spek, A. L.; Vogt, D.; Müller, C. New J. Chem. 2010, 34, 1547.

    91. [91]

      Müller, C.; Pidko, E. A.; Staring, A. J. P. M.; Lutz, M.; Spek, A. L.; van Santen, R. A.; Vogt, D. Chem. Eur. J. 2008, 14, 4899.

    92. [92]

      Müller, C.; Pidko, E. A.; Totev, D.; Lutz, M.; Spek, A. L.; van Santen, R. A.; Vogt, D. Dalton Trans. 2007, 5372.

    93. [93]

      Müller, C.; Pidko, E. A.; Lutz, M.; Spek, A. L.; Vogt, D. Chem. Eur. J. 2008, 14, 8803.

    94. [94]

      Ashe, A. J. III. J. Am. Chem. Soc. 1971, 93, 3293.

    95. [95]

      Mulliken, R. S. J. Am. Chem. Soc. 1950, 72, 4493.

    96. [96]

      Rösch, W.; Regitz, M. Z. Naturforsch. B 1986, 41, 931.

    97. [97]

      Chen, X.; Alidori, S.; Puschmann, F. F.; Santiso-Quinones, G.; Benkő, Z.; Li, Z.; Becker, G.; Grützmacher, H.-F.; Grützmacher, H. Angew. Chem. Int. Ed. 2014, 53, 1641.

    98. [98]

      Avarvari, N.; Le Floch, P.; Mathey, F. J. Am. Chem. Soc. 1996, 118, 11978.

    99. [99]

      Avarvari, N.; Le Floch, P.; Charrier, C.; Mathey, F. Heteroat. Chem. 1996, 7, 397.

    100. [100]

      Nakajima, K.; Takata, S.; Sakata, K.; Nishibayashi, Y. Angew. Chem. Int. Ed. 2015, 54, 7597.

  • 加载中
    1. [1]

      Junyuan Zhang Zhiwei Miao . 有机磷杀虫剂的前世今生. University Chemistry, 2025, 40(6): 129-138. doi: 10.12461/PKU.DXHX202408118

    2. [2]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    3. [3]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    4. [4]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    5. [5]

      Ruilan Fan Xiaoling Huang . 磷源的选择及三种含磷阻燃剂的合成与阻燃性. University Chemistry, 2025, 40(8): 181-191. doi: 10.12461/PKU.DXHX202410025

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    8. [8]

      Linfeng Zhou Yulin Zhang Suhao Lin Longguan Zhu . 2023年北京大学金秋营及第37届中国化学奥林匹克决赛磷团簇相关试题解析与拓展. University Chemistry, 2025, 40(8): 376-387. doi: 10.12461/PKU.DXHX202411030

    9. [9]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    10. [10]

      Fengxiao Wang Zhiwei Miao Yaofeng Yuan . 有机磷化学与化学教学. University Chemistry, 2025, 40(8): 158-168. doi: 10.12461/PKU.DXHX202410077

    11. [11]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    12. [12]

      Shuai Yuan Yaofeng Yuan . Academician Chengye Yuan and Organic Phosphorus Chemistry. University Chemistry, 2025, 40(7): 393-400. doi: 10.12461/PKU.DXHX202409123

    13. [13]

      Caiyun JinZexuan WuGuopeng LiZhan LuoNian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094

    14. [14]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    15. [15]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    16. [16]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    18. [18]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

Metrics
  • PDF Downloads(0)
  • Abstract views(11)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return