Citation:
Dan Liu. 可见光-有机小分子协同催化的不对称自由基反应研究进展[J]. University Chemistry,
;2025, 40(6): 118-128.
doi:
10.12461/PKU.DXHX202408101
-
近年来,有机小分子催化的不对称自由基反应在有机合成领域受到了广泛关注,该策略反应条件温和,并表现出优异的区域选择性和立体选择性。尤其是可见光催化快速发展,为该领域提供了新生机。本文介绍了基于可见光与有机小分子催化策略结合的不对称自由基反应研究进展,主要内容包括:可见光-手性胺协同催化,可见光-卡宾协同催化,以及可见光-氢键催化剂协同催化的不对称自由基反应。
-
-
-
[1]
-
[2]
Studer, A.; Curran, D. P. Angew. Chem. Int. Ed. 2016, 55, 58.
-
[3]
Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
-
[4]
MacMillan, D. W. Nature 2008, 455, 304.
-
[5]
Bertelsen, S.; Jørgensen, K. A. Chem. Soc. Rev. 2009, 38, 2178.
-
[6]
Beeson, T. D.; Mastracchio, A.; Hong, J.-B.; Ashton, K.; MacMillan, D. W. C. Science 2007, 316, 582.
-
[7]
Zhu, L.; Wang, D.; Jia, Z.; Lin, Q.; Huang, M.; Luo, S. ACS Catal. 2018, 8, 5466.
-
[8]
Nicewicz, D. A.; MacMillan, D. W. Science 2008, 322, 77.
-
[9]
Nagib, D. A.; Scott, M. E.; MacMillan, D. W. J. Am. Chem. Soc. 2009, 131, 10875.
-
[10]
Shih, H.-W.; Vander Wal, M. N.; Grange, R. L.; MacMillan, D. W. J. Am. Chem. Soc. 2010, 132, 13600.
-
[11]
Li, M.; Sang, Y.; Xue, X.-S.; Cheng, J.-P. J. Org. Chem. 2018, 83, 3333.
-
[12]
Neumann, M.; Füldner, S.; König, B.; Zeitler, K. Angew. Chem. Int. Ed. 2011, 50, 951.
-
[13]
Rigotti, T.; Casado-Sánchez, A.; Cabrera, S.; Pérez-Ruiz, R.; Liras, M.; de la Peña O’Shea, V. A.; Alemán, J. ACS Catal. 2018, 8, 5928.
-
[14]
Arceo, E.; Jurberg, I. D.; Alvarez-Fernandez, A.; Melchiorre, P. Nat. Chem. 2013, 5, 750.
-
[15]
Saux, E. L.; Ma, D.; Bonilla, P.; Holden, C. M.; Lustosa, D.; Melchiorre, P. Angew. Chem. Int. Ed. 2021, 60, 5357.
-
[16]
Silvi, M.; Verrier, C.; Rey, Y. P.; Buzzetti, L.; Melchiorre, P. Nat. Chem. 2017, 9, 868.
-
[17]
Spinnato, D.; Schweitzer-Chaput, B.; Giulio Goti, M. O.; Melchiorre, P. Angew. Chem. Int. Ed. 2020, 59, 9485.
-
[18]
Li, L.-J.; Zhang, J.-C.; Li, W.-P.; Zhang, D.; Duanmu, K.; Yu, H.; Ping, Q.; Yang, Z.-P. J. Am. Chem. Soc. 2024, 146, 9404.
-
[19]
Guin, J.; De Sarkar, S.; Grimme, S.; Studer, A. Angew. Chem. Int. Ed. 2008, 47, 8727.
-
[20]
Bay, A. V.; Scheidt, K. A. Trends in Chem. 2022, 4, 277.
-
[21]
DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2012, 134, 8094.
-
[22]
Choi, H.; Mathi, G. R.; Hong, S.; Hong, S. Nat. Commun. 2022, 13, 1776.
-
[23]
Dondoni, A.; Massi, A. Angew. Chem. Int. Ed. 2008, 47, 4638.
-
[24]
Rono, L. J.; Yayla, H. G.; Wang, D. Y.; Armstrong, M. F.; Knowles, R. R. J. Am. Chem. Soc. 2013, 135, 17735.
-
[25]
Yin, Y.; Dai, Y.; Jia, H.; Li, J.; Bu, L.; Qiao, B.; Zhao, X.; Jiang, Z. J. Am. Chem. Soc. 2018, 140, 6083.
-
[26]
Lahdenperä, A. S. K.; Bacoş, P. D.; Phipps, R. J. J. Am. Chem. Soc. 2022, 144, 22451.
-
[27]
Li, J.; Kong, M.; Qiao, B.; Lee, R.; Zhao, X.; Jiang, Z. Nat. Commun. 2018, 9, 2445.
-
[28]
Proctor, R. S. J.; Davis, H. J.; Phipps, R. J. Science 2018, 360, 419.
-
[29]
Liang, D.; Chen, J.-R.; Tan, L.-P.; He, Z.-W.; Xiao, W.-J. J. Am. Chem. Soc. 2022, 144, 6040.
-
[30]
Che, C.; Lu, Y.-N.; Wang, C.-J. J. Am. Chem. Soc. 2023, 145, 2779.
-
[31]
Fu, Q.; Cao, S.; Wang, J.; Lv, X.; Wang, H.; Zhao, X.; Jiang, Z. J. Am. Chem. Soc. 2024, 146, 8372.
-
[32]
He, F.-S.; Zhang, C.; Jiang, M.; Lou, L.; Wu, J.; Ye, S. Chem. Sci. 2022, 13, 8834.
-
[33]
Zhang, C.; Tang, Z.; Qiu, Y.; Tang, J.; Ye, S.; Li, Z.; Wu, J. Chem. Catal. 2022, 2, 164.
-
[34]
Zhang, J.-L.; He, W.-B.; Hu, X.-Q.; Xu, P.-F. Sci. China Chem. 2024, 67, 945.
-
[1]
-
-
-
[1]
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
-
[2]
Ke QIAO , Yanlin LI , Shengli HUANG , Guoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265
-
[3]
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
-
[4]
Tingyu Zhu , Hui Zhang , Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011
-
[5]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
-
[6]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[7]
Xinzhe HUANG , Lihui XU , Yue YANG , Liming WANG , Zhangyong LIU , Zhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212
-
[8]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
-
[9]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[10]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[11]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[12]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
-
[13]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[14]
Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055
-
[15]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[16]
Lewang Yuan , Yaoyao Peng , Zong-Jie Guan , Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086
-
[17]
Zhifang SU , Zongjie GUAN , Yu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290
-
[18]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[19]
Xinxin YU , Yongxing LIU , Xiaohong YI , Miao CHANG , Fei WANG , Peng WANG , Chongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438
-
[20]
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(35)
- HTML views(7)