Citation: Yu'ang Liu,  Yuechao Wu,  Junyu Huang,  Tao Wang,  Xiaohong Liu,  Tianying Yan. Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method[J]. University Chemistry, ;2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112 shu

Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method

  • Corresponding author: Xiaohong Liu,  Tianying Yan, 
  • Received Date: 26 July 2024
    Revised Date: 13 February 2025

  • This paper presents a computational chemistry experiment designed to calculate the absolute electrode potential of the standard hydrogen electrode (SHE) using quantum chemistry ab initio methods combined with thermodynamic cycles. The specific approach involves calculating the solvation free energy of protons in water using the self-consistent reaction field (SCRF) method. Based on this, the Gibbs free energy of the SHE half-reaction is determined, and its absolute electrode potential is calculated using the Nernst equation. This experiment aims to deepen students' understanding of electrode potentials, redox reactions, the Nernst equation, thermodynamic cycles, Gibbs free energy, and quantum chemistry ab initio methods.
  • 加载中
    1. [1]

      Lewis, A.; Bumpus, J. A.; Truhlar, D. G.; Cramer, C. J. J. Chem. Educ. 2004, 81 (4), 596.

    2. [2]

      Matsui, T.; Kitagawa, Y.; Okumura, M.; Shigeta, Y.; Sakaki, S. J. Comput. Chem. 2013, 34 (1), 21.

    3. [3]

      Reiss, H.; Heller, A. J. Phys. Chem. 1985, 89 (20), 4207.

    4. [4]

      Donald, W. A.; Leib, R. D.; O’Brien, J. T.; Bush, M. F.; Williams, E. R. J. Am. Chem. Soc. 2008, 130 (11), 3371.

    5. [5]

      Kelly, C. P.; Cramer, C. J.; Truhlar. D. G. J. Phys. Chem. B 2007, 111 (2), 408.

    6. [6]

      Isse, A. A.; Gennaro, A. J. Phys. Chem. B 2010, 114 (23), 7894.

    7. [7]

      Donald, W. A.; Leib, R. D.; Jeremy, T.; O’Brien, J. T.; Williams, E. R. Chem. Eur. J. 2009, 15 (24), 5926.

    8. [8]

      Fawcett, W. R. Langmuir 2008, 24 (17), 9868.

    9. [9]

      Tripkovic, V.; Björketun, M. E.; Skúlason, E.; Rossmeisl, J. Phys. Rev. B 2011, 84, 115452.

    10. [10]

      Gomer, R.; Tryson, G. J. Chem. Phys. 1977, 66 (10), 4413.

    11. [11]

      Trasatti, S. Pure Appl. Chem. 1986, 58 (7), 955.

    12. [12]

      Bartmess, J. E. J. Phys. Chem. 1994, 98 (25), 6420.

    13. [13]

      Trasatti, S. Electrochim. Acta 1990, 35 (1), 269.

    14. [14]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2016.

    15. [15]

      Cheng, J.; Sprik, M. Phys. Chem. Chem. Phys. 2012, 14 (32), 11245.

    16. [16]

      Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113 (18), 6378.

    17. [17]

      Pliego, J. R.; Riveros, J. M. J. Phys. Chem. A 2001, 105 (30), 7241.

    18. [18]

      Eigen D. R. M. Angew Chem. Int Ed. Engl. 1964, 3 (1), 1.

    19. [19]

      Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Theory Comput. 2006, 2 (2), 364.

    20. [20]

      Ben-Naim, A. J. Phys. Chem. 1978, 82 (7), 792.

    21. [21]

      Foresman, J. B., Frish A. Exploring Chemistry with Electronic Structure Methods, 3rd ed.; Gaussian Inc.: Wallingford, CT, USA, 2015; pp. 207-210.

  • 加载中
    1. [1]

      Qiang Wu Wenhua Hou . Teaching Classical Contents Newly: Taking Temperature–Entropy Diagram as an Example. University Chemistry, 2025, 40(4): 399-407. doi: 10.12461/PKU.DXHX202407102

    2. [2]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    3. [3]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    4. [4]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    5. [5]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    6. [6]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    7. [7]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    8. [8]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    9. [9]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    10. [10]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    11. [11]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    12. [12]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    13. [13]

      Zeqiu Chen Limiao Cai Jie Guan Zhanyang Li Hao Wang Yaoguang Guo Xingtao Xu Likun Pan . 电容去离子提锂技术中电极材料的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-. doi: 10.1016/j.actphy.2025.100089

    14. [14]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    15. [15]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    16. [16]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    17. [17]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    18. [18]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    19. [19]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    20. [20]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

Metrics
  • PDF Downloads(0)
  • Abstract views(513)
  • HTML views(112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return