Citation: Jiajie Li,  Xiaocong Ma,  Jufang Zheng,  Qiang Wan,  Xiaoshun Zhou,  Yahao Wang. Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms[J]. University Chemistry, ;2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117 shu

Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms

  • Received Date: 27 June 2024
    Revised Date: 29 August 2024

  • In recent years, electrocatalytic organic synthesis has attracted increasing attention. Its advantages such as low pollution and high atomic efficiency give it a huge advantage over traditional organic synthesis methods and meet the social requirements of green chemistry. Therefore, detecting the reaction process and key intermediates at the electrode interface from the molecular level has important guiding significance for understanding the reaction mechanism and designing more efficient catalysts. Raman spectroscopy is a type of vibrational spectroscopy that is non-destructive and uninterrupted by water. In particular, surface-enhanced Raman spectroscopy has ultra-high surface sensitivity. It can provide key information on the catalyst surface structure, adsorbed substances and intermediates during the reaction, and provide a reliable platform for exploring the reaction mechanism. This article reviews the recent advances in electrocatalytic organic reaction mechanisms probed by in-situ Raman spectroscopy. Specifically, Raman spectroscopy reveals important intermediates, active substances and reaction pathways in electrocatalytic hydrogenation, activations of C―O, C―X (X = F, Cl, Br, I) and C―H bonds. By analyzing specific cases, it aims to help students understand the research frontiers of organic electrosynthesis and stimulate interest in exploring synthetic electrochemistry, one of IUPAC’s “Top Ten Emerging Technologies in Chemistry” in 2023.
  • 加载中
    1. [1]

      Novaes, L. F. T.; Liu, J.; Shen, Y.; Lu, L.; Meinhardt, J. M.; Lin, S. Chem. Soc. Rev. 2021, 50 (14), 7941.

    2. [2]

      Francke, R. Curr. Opin. Electrochem. 2022, 36, 101111.

    3. [3]

      Heo, J.; Ahn, H.; Won, J.; Son, J. G.; Shon, H. K.; Lee, T. G.; Han, S. W.; Baik, M.-H. Science 2020, 370 (6513), 214.

    4. [4]

      Ma, C.; Fang, P.; Liu, Z.-R.; Xu, S.-S.; Xu, K.; Cheng, X.; Lei, A.; Xu, H.-C.; Zeng, C.; Mei, T.-S. Sci. Bull. 2021, 66 (23), 2412.

    5. [5]

      Wu, X.; Wang, Y.; Wu, Z.-S. Chem 2022, 8 (10), 2594.

    6. [6]

      Downes, C. A.; Marinescu, S. C. ChemSusChem 2017, 10 (22), 4374.

    7. [7]

      Chong, X.; Liu, C.; Huang, Y.; Huang, C.; Zhang, B. Natl. Sci. Rev. 2020, 7 (2), 285.

    8. [8]

      Li, N.; Pan, C.; Lu, G.; Pan, H.; Han, Y.; Wang, K.; Jin, P.; Liu, Q.; Jiang, J. Adv. Mater. 2023, 36 (5), 2311023.

    9. [9]

      Shi, Z.; Chen, J.; Li, K.; Liu, Y.; Tang, Y.; Zhang, L. Chem. Eng. J. 2023, 461, 141933.

    10. [10]

      Drasbæk, D. B.; Welander, M. M.; Traulsen, M. L.; Sudireddy, B. R.; Holtappels, P.; Walker, R. A. J. Mater. Chem. A 2022, 10 (10), 5550.

    11. [11]

      Xue, H.; Yang, T.; Zhang, Z.; Zhang, Y.; Geng, Z.; He, Y. Appl. Catal. B, 2023, 330, 122641.

    12. [12]

      Pople, J. M. M.; Nicholls, T. P.; Pham, L. N.; Bloch, W. M.; Lisboa, L. S.; Perkins, M. V.; Gibson, C. T.; Coote, M. L.; Jia, Z.; Chalker, J. M. J. Am. Chem. Soc. 2023, 145 (21), 11798.

    13. [13]

      Zhang, B.; He, J.; Gao, Y.; Levy, L.; Oderinde, M. S.; Palkowitz, M. D.; Dhar, T. G. M.; Mandler, M. D.; Collins, M. R.; Schmitt, D. C.; et al. Nature 2023, 623 (7988), 745.

    14. [14]

      Wang, Y.; Zhao, R.; Ackermann, L. Adv. Mater. 2023, 35 (49), 2300760.

    15. [15]

      Gu, Z.; Zhang, Z.; Ni, N.; Hu, C.; Qu, J. Environ. Sci. Technol. 2022, 56 (7), 4356.

    16. [16]

      Yuan, S.; Xue, Y.; Ma, R.; Ma, Q.; Chen, Y.; Fan, J. Sci. Total Environ. 2023, 866, 161444.

    17. [17]

      Yang, Y.; Wang, H.; Li, J.; He, B.; Wang, T.; Liao, S. Environ. Sci. Technol. 2012, 46 (12), 6815.

    18. [18]

      Li, C.-Y.; Tian, Z.-Q. Chem. Soc. Rev. 2024, 53 (7), 3579.

    19. [19]

      Hess, C. Chem. Soc. Rev. 2021, 50 (5), 3519.

    20. [20]

      Wang, Y.-H.; Zheng, S.; Yang, W.-M.; Zhou, R.-Y.; He, Q.-F.; Radjenovic, P.; Dong, J.-C.; Li, S.; Zheng, J.; Yang, Z.-L.; et al. Nature 2021, 600 (7887), 81.

    21. [21]

      Wang, Y.-H.; Wei, J.; Radjenovic, P.; Tian, Z.-Q.; Li, J.-F. Anal. Chem. 2019, 91 (3), 1675.

    22. [22]

      Elliott, A. B. S.; Horvath, R.; Gordon, K. C. Chem. Soc. Rev. 2012, 41 (5), 1929.

    23. [23]

      Wang, Y. H.; Wang, X. T.; Ze, H.; Zhang, X. G.; Radjenovic, P. M.; Zhang, Y. J.; Dong, J. C.; Tian, Z. Q.; Li, J. F. Angew. Chem. Int. Ed. 2021, 60 (11), 5708.

    24. [24]

      Lin, X.-M.; Wang, X.-T.; Deng, Y.-L.; Chen, X.; Chen, H.-N.; Radjenovic, P. M.; Zhang, X.-G.; Wang, Y.-H.; Dong, J.-C.; Tian, Z.-Q.; et al. Nano Lett. 2022, 22 (13), 5544.

    25. [25]

    26. [26]

      Keeler, A. J.; Salazar-Banda, G. R.; Russell, A. E. Curr. Opin. Electrochem. 2019, 17, 90.

    27. [27]

      Wang, Y. H.; Liang, M. M.; Zhang, Y. J.; Chen, S.; Radjenovic, P.; Zhang, H.; Yang, Z. L.; Zhou, X. S.; Tian, Z. Q.; Li, J. F. Angew. Chem. Int. Ed. 2018, 57 (35), 11257.

    28. [28]

      Xu, J.; Wang, Z. ChemElectroChem 2023, 10 (19), e202300370.

    29. [29]

      Li, X.-C.; Wang, B.; Yu, Z.; Wan, Q.; Zheng, J.-F.; Maisonhaute, E.; Zhou, X.-S.; Wang, Y.-H. Sci. China: Chem. 2024, 2224.

    30. [30]

      Hie, L.; Fine Nathel, N. F.; Hong, X.; Yang, Y. F.; Houk, K. N.; Garg, N. K. Angew. Chem. Int. Ed. 2016, 55 (8), 2810.

    31. [31]

      Liu, C.; Tao, H.; Li, J.; Huang, J.; Zhang, Z.; Niu, Y.; Liu, Y.; Lian, C.; Liu, H. Chem. Eng. J. 2024, 287, 119804.

    32. [32]

      Chong, Y.; Chen, T.; Li, Y.; Lin, J.; Huang, W.-H.; Chen, C.-L.; Jin, X.; Fu, M.; Zhao, Y.; Chen, G. ; et al. Environ. Sci. Technol. 2023, 57 (14), 5831.

    33. [33]

      Qi, Y.; Zhang, Y.; Yang, L.; Zhao, Y.; Zhu, Y.; Jiang, H.; Li, C. Nat. Commun. 2022, 13 (1), 4602.

    34. [34]

      Jahromi, A. F.; Ruiz-López, E.; Dorado, F.; Baranova, E. A.; de Lucas-Consuegra, A. Renew. Energ. 2022, 183, 515.

    35. [35]

      Huang, H.; Yu, C.; Han, X.; Huang, H.; Wei, Q.; Guo, W.; Wang, Z.; Qiu, J. Energy Environ. Sci. 2020, 13 (12), 4990.

    36. [36]

      Hu, X.; Lu, J.; Liu, Y.; Chen, L.; Zhang, X.; Wang, H. Environ. Chem. Lett. 2023, 21 (5), 2825.

    37. [37]

      Vo, T.-G.; Ho, P.-Y.; Chiang, C.-Y. Appl. Catal. B 2022, 300, 120723.

    38. [38]

      Cheng, Z.; Hu, J.; Zhou, W.; Deng, W.; Ma, M.; Tan, Y. J. Mater. Chem. A 2024, 12 (22), 13400.

    39. [39]

      Wu, J.; Xie, W.; Zhang, Y.; Ke, X.; Li, T.; Fang, H.; Sun, Y.; Zeng, X.; Lin, L.; Tang, X. J. Energy Chem. 2024, 95, 670.

    40. [40]

      Zhou, Y.; Shen, Y.; Li, H. Appl. Catal. B 2022, 317, 121776.

    41. [41]

      Zhou, B.; Dong, C.-L.; Huang, Y.-C.; Zhang, N.; Wu, Y.; Lu, Y.; Yue, X.; Xiao, Z.; Zou, Y.; Wang, S. J. Energy Chem. 2021, 61, 179.

    42. [42]

      Li, Z.; Huai, L.; Hao, P.; Zhao, X.; Wang, Y.; Zhang, B.; Chen, C.; Zhang, J. Chin. J. Catal. 2022, 43 (3), 793.

    43. [43]

      Liu, P.; Huai, L.; Zhu, B.; Zhong, Y.; Zhang, J.; Chen, C. Green Chem. 2024, 26 (9), 5377.

    44. [44]

      Cui, Z.; Dong, X. A.; Cho, S. G.; Tegomoh, M. N.; Dai, W.; Dong, F.; Co, A. C. Nat. Commun. 2022, 13 (1), 5840.

    45. [45]

      Linnemann, J.; Kanokkanchana, K.; Tschulik, K. ACS Catal. 2021, 11 (9), 5318.

    46. [46]

      Fang, Z.; Jackson, J. E.; Hegg, E. L. ACS Sustain. Chem. Eng. 2022, 10 (23), 7545.

    47. [47]

      Peng, T.; Zhuang, T.; Yan, Y.; Qian, J.; Dick, G. R.; Behaghel de Bueren, J.; Hung, S.-F.; Zhang, Y.; Wang, Z.; Wicks, J.; et al. J. Am. Chem. Soc. 2021, 143 (41), 17226.

    48. [48]

      Zhang, P.; Sheng, X.; Chen, X.; Fang, Z.; Jiang, J.; Wang, M.; Li, F.; Fan, L.; Ren, Y.; Zhang, B.; et al. Angew. Chem. Int. Ed. 2019, 58 (27), 9155.

    49. [49]

      Kong, A.; Liu, M.; Zhang, H.; Cao, Z.; Zhang, J.; Li, W.; Han, Y.; Fu, Y. Chem. Eng. J. 2022, 445, 136719.

    50. [50]

      Ma, J.; Wang, Z.; Majima, T.; Zhao, G. ACS Catal. 2022, 12 (22), 14062.

    51. [51]

      Min, Y.; Mei, S.-C.; Pan, X.-Q.; Chen, J.-J.; Yu, H.-Q.; Xiong, Y. Nat. Commun. 2023, 14 (1), 5134.

    52. [52]

      Liu, J.; Cai, Z.-Y.; Sun, W.-X.; Wang, J.-Z.; Shen, X.-R.; Zhan, C.; Devasenathipathy, R.; Zhou, J.-Z.; Wu, D.-Y.; Mao, B.-W.; et al. J. Am. Chem. Soc. 2020, 142 (41), 17489.

    53. [53]

      Zhuo, Q.; Lu, J.; Niu, J.; Crittenden, J. C.; Yu, G.; Wang, S.; Yang, B.; Chen, Z. ACS EST Eng. 2022, 2 (10), 1756.

    54. [54]

      Wang, A.; Huang, Y.-F.; Sur, U. K.; Wu, D.-Y.; Ren, B.; Rondinini, S.; Amatore, C.; Tian, Z.-Q. J. Am. Chem. Soc. 2010, 132 (28), 9534.

    55. [55]

      Jiang, C.-C.; Li, X.-C.; Fan, J.-A.; Fu, J.-Y.; Huang-Fu, X.-N.; Li, J.-J.; Zheng, J.-F.; Zhou, X.-S.; Wang, Y.-H. Analyst 2022, 147 (7), 1341.

    56. [56]

    57. [57]

      Massignan, L.; Zhu, C.; Hou, X.; Oliveira, J. C. A.; Salamé, A.; Ackermann, L. ACS Catal. 2021, 11 (18), 11639.

    58. [58]

      Sauermann, N.; Meyer, T. H.; Qiu, Y.; Ackermann, L. ACS Catal. 2018, 8 (8), 7086.

    59. [59]

      Stevens, M. A.; Colebatch, A. L. Chem. Soc. Rev. 2022, 51 (6), 1881.

    60. [60]

      Liu, X.; He, X.; Fang, Z.; Gong, S.; Xiong, D.; Chen, W.; Wang, J.; Chen, Z. Chem. Mater. 2024, 36 (2), 968.

    61. [61]

      Tian, H.; Zhang, Y.; Yu, D.; Yang, X.; Wang, H.; Matindi, C.; Yin, Z.; Hui, H.; Mamba, B. B.; Li, J. Electrochim. Acta 2022, 426, 140796.

    62. [62]

      Wang, K.; Guo, Z.; Zhou, M.; Yang, Y.; Li, L.; Li, H.; Luque, R.; Saravanamurugan, S. J. Energy Chem. 2024, 91, 542.

    63. [63]

      Dang, K.; Dong, H.; Wang, L.; Jiang, M.; Jiang, S.; Sun, W.; Wang, D.; Tian, Y. Adv. Mater. 2022, 34 (27), 2200302.

  • 加载中
    1. [1]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    2. [2]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    3. [3]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    4. [4]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    5. [5]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    6. [6]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    7. [7]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    8. [8]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    9. [9]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    10. [10]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    11. [11]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    12. [12]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    13. [13]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    14. [14]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    15. [15]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    16. [16]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    17. [17]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    18. [18]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    19. [19]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    20. [20]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

Metrics
  • PDF Downloads(0)
  • Abstract views(86)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return