Citation: YU Jiarui, CHEN Shuai, XIN Xing, XU Jingkun. Research and Application Progress on Dimethyl Sulfoxide Modified Poly(3, 4-ethylenedioxythiophene): Poly(styrenesulfonic acid) Films[J]. Chinese Journal of Applied Chemistry, ;2020, 37(12): 1343-1356. doi: 10.11944/j.issn.1000-0518.2020.12.200146 shu

Research and Application Progress on Dimethyl Sulfoxide Modified Poly(3, 4-ethylenedioxythiophene): Poly(styrenesulfonic acid) Films

  • Corresponding author: CHEN Shuai, shuai.chen@utah.edu XU Jingkun, xujingkun@tsinghua.org.cn
  • Received Date: 15 May 2020
    Revised Date: 30 June 2020
    Accepted Date: 3 August 2020

    Fund Project: the National Natural Science Foundation of China 51863009the Natural Science Foundation of Jiangxi, China 20192BAB216012Supported by the National Natural Science Foundation of China(No.51863009), China Scholarship Council(No.201808360327), and the Natural Science Foundation of Jiangxi, China(No.20192BAB216012)China Scholarship Council 201808360327

Figures(7)

  • Dimethyl sulfoxide (DMSO), known as a "universal solvent", is not only used routinely in chemistry, medicine, cosmetics and other fields, but also has its own applications in the field of organic electronics. Poly(3, 4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS), as a conductive polymer materials with excellent water dispersion, has the advantages of excellent machinability, miscibility, biological compatibility, film-forming property and commercial scale production, and is widely used in antistatic coating, organic solar cells, biological sensors, and other areas of the new materials and green energy. DMSO plays an important role in regulating the properties of PEDOT:PSS films, such as morphology, conductivity, thermoelectricity, power function, interface contact, mechanics, and self-healing. Based on the research results of our team, other domestic and foreign scholars in this field, this paper systematically reviewed the effect and mechanism of DMSO on PEDOT and its derivative:PSS (PEDOTs:PSS), and discussed the problems and challenges in the application.
  • 加载中
    1. [1]

      Brayton C F. Dimethyl Sulfoxide(DMSO):A Review[J]. Cornell Vet, 1986,76:76-90.

    2. [2]

      Mi H Y, Jing X, Salick M R. Carbon Nanotube (CNT) and Nanofibrillated Cellulose (NFC) Reinforcement Effect on Thermoplastic Polyurethane (TPU) Scaffolds Fabricated via Phase Separation Using Dimethyl Sulfoxide (DMSO) as Solvent[J]. Behav Biomed, 2016,62:417-427.

    3. [3]

      Shen K, Fu Y, Li J N. What are the pKa Values of C-H Bonds in Aromatic Heterocyclic Compounds in DMSO[J]. Tetrahedron, 2007,63(7):1568-1576.

    4. [4]

      Elisia I, Nakamura H, Lam V. DMSO Represses Inflammatory Cytokine Production from Human Blood Cells and Reduces Autoimmune Arthritis[J]. Plos One, 2016,11(3):0152538-0152561.

    5. [5]

      Panuszko A, Bruździak P, Śmiechowski M. DMSO Hydration Redefined:Unraveling the Hydrophobic Hydration of Solutes with a Mixed Hydrophilic-Hydrophobic Characteristic[J]. J Mol Liq, 2019,294:111661-111672.

    6. [6]

      Mukherjee A, Sarkar S, Gupta S. DMSO Strengthens Chitin Deacetylase-Chitin Interaction:Physicochemical, Kinetic, Structural and Catalytic Insights[J]. Carbohydr Polym, 2019,223:115032-115039.

    7. [7]

      Song Y F, Zhang H X, Wang G P. DMSO, an Organic Cleanup Solvent for TCA/Acetone-Precipitated Proteins, Improves 2-DE Protein Analysis of Rice Roots[J]. Plant Mol Biol Rep, 2012,30(5):1204-1209.

    8. [8]

      Xu D, Wang Z L, Xu J J. Novel DMSO-Based Electrolyte for High Performance Rechargeable Li-O2 Batteries[J]. Chem Commun, 2012,48(55):6948-6950.

    9. [9]

      Pinna A, Casula M F, Pilia L. Driving the Polymerization of PEDOT:PSS by Means of a Nanoporous Template:Effects on the Structure[J]. Polymer, 2019,185:121941-121949.

    10. [10]

      Shirakawa H, Louis E J, McDiarmid A G. Synthesis of Electrically Conducting Organic Polymers:Halogen Derivatives of Polyacetylene, (CH)x[J]. J Chem Soc Chem Commun, 1977(16):578-580.

    11. [11]

      Xu J W, Zhu Q, Yildirim E. Improved Alignment of PEDOT:PSS Induced by In-Situ Crystallization of "Green" Dimethylsulfone Molecules to Enhance the Polymer Thermoelectric Performance[J]. Front Chem, 2019:2296-2646.

    12. [12]

      Fan X, Nie W Y, Tsai H. PEDOT:PSS for Flexible and Stretchable Electronics:Modifcations, Strategies, and Applications[J]. Adv Sci, 2019,6(19):1900813-1900853.

    13. [13]

      Cheng T, Zhang Y Z, Zhang J D. High-Performance Free-Standing PEDOT:PSS Electrodes for Flexible and Transparent All-Solidstate Supercapacitors[J]. J Mater Chem A, 2016,4(27):10493-10499.

    14. [14]

      Zhang X Q, Wu J, Wang J T. Highly Conductive PEDOT:PSS Transparent Electrode Prepared by a Post-Spin-Rinsing Method for Efficient ITO-Free Polymer Solar Cells[J]. Sol Energy Mater Sol C, 2016,144:143-149.

    15. [15]

      Yan W R, Li J H, Zhang G P. A Synergistic Self-Assembled 3D PEDOT:PSS/Graphene Composite Sponge for Stretchable Microsupercapacitors[J]. J Mater Chem A, 2020,8(2):554-564.

    16. [16]

      Jonas F, Morrison J T. 3, 4-Polyethylenedioxythiophene (PEDT):Conductive Coatings Technical Applications and Properties[J]. Synth Met, 1997,85(1/2/3):1397-1398.

    17. [17]

      Detailed Information About CLEVIOSTM PEDOT: PSS Aqueous Dispersions and Ready-to-Use Formulations to the Electronics Industry can be Found at the H. C. Starck Homepage: http://CLEVIOS.com/en/home/CLEVIOS-homepage [EB/OL].aspx(last accessed November 2020).

    18. [18]

      Lee C S, Kim J Y, Lee D E. Organic Based Flexible Speaker Through Enhanced Conductivity of PEDOT/PSS with Various Solvents[J]. Synth Met, 2003,135/136:13-14.

    19. [19]

      Argun A A, Cirpan A, Reynolds J R. The First Truly All-Polymer Electrochromic Devices[J]. Adv Mater, 2003,15(16):1338-1341.

    20. [20]

      Hu Z Y, Zhang J J, Zhu Y J. Effects of Solvent-Treated PEDOT:PSS on Organic Photovoltaic Devices[J]. Renew Energ, 2014,62:100-105.

    21. [21]

      Chen S, Xu J K. Advances in Chemistry Research[M]. Nova Science Publishers, Inc., 2014, 22:99-125.

    22. [22]

      Lu B Y, Wang J, Yue R R. Electrosynthesis and Characterization of a Polyfluorene Derivative with Green-Light-Emitting Property[J]. J Mater Sci, 2012,47(1):315-322.

    23. [23]

      Hou J, Zhu G, Xu J K. Anticorrosion Performance of Epoxy Coatings Containing Small Amount of Inherently Conducting PEDOT/PSS on Hull Steel in Seawater[J]. J Mater Sci Technol, 2013,29(7):678-684.

    24. [24]

      Xia Y J, Sun K, Ouyang J Y. Solution-Processed Metallic Conducting Polymer Films as Transparent Electrode of Optoelectronic Devices[J]. Adv Mater, 2012,24(18):2436-2440.

    25. [25]

      Lingstedt L V, Ghittorelli M, Lu H. Effect of DMSO Solvent Treatments on the Performance of PEDOT:PSS Based Organic Electrochemical Transistors[J]. Adv Electron Mater, 2019,5(3):1800804-1800811.

    26. [26]

      Chang K C, Jeng M S, Yang C C. The Thermoelectric Performance of Poly(3, 4-ethylenedi oxythiophene)/Poly(4-styrenesulfonate) Thin Films[J]. J Electron Mater, 2009,38(7):1182-1188.

    27. [27]

      Gasiorowski J, Menon R, Hingerl K. Surface Morphology, Optical Properties and Conductivity Changes of Poly(3, 4-ethylenedioxythiophene):Poly(styrenesulfonate) by Using Additives[J]. Thin Solid Films, 2013,536:211-215.

    28. [28]

      Jönssoa S K M, Birgerson J, Crispin X. The Effects of Solvents on the Morphology and Sheet Resistance in Poly(3, 4-ethylenedioxythiophene)-Polystyrenesulfonic Acid (PEDOT-PSS) Films[J]. Synth Met, 2003,139(1):1-10.

    29. [29]

      Huang J S, Miller P F, Wilson J S. Investigation of the Effects of Doping and Post-Deposition Treatments on the Conductivity, Morphology, and Work Function of Poly(3, 4-ethylenedioxythiophene)/Poly(styrene sulfonate) Films[J]. Adv Funct Mater, 2005,15(2):290-296.

    30. [30]

      Ouyang J Y, Xu Q F, Chu C W. On the Mechanism of Conductivity Enhancement in Poly(3, 4-ethylenedioxythiophene):Poly(styrene sulfonate) Film Through Solvent Treatment[J]. Polymer, 2004,45(25):8443-8450.

    31. [31]

      Cruz-Cruz I, Reyes-Reyes M, Aguilar-Frutis M A. Study of the Effect of DMSO Concentration on the Thickness of the PSS Insulating Barrier in PEDOT:PSS Thin Films[J]. Synth Met, 2010,160(13/14):1501-1506.

    32. [32]

      Yildirim E, Wu G, Yong X. A Theoretical Mechanistic Study on Electrical Conductivity Enhancement of DMSO Treated PEDOT:PSS[J]. J Mater Chem C, 2018,6(19):5122-5131.

    33. [33]

      Ouyang J Y, Chu C W, Chen F C. High-Conductivity Poly(3, 4-ethylenedioxythiophene):Poly(styrene sulfonate) Film and Its Application in Polymer Optoelectronic Devices[J]. Adv Funct Mater, 2005,15(2):203-208.

    34. [34]

      Ouyang J Y, Chu C W, Chen F C. Polymer Optoelectronic Devices with High-Conductivity Poly(3, 4-Ethylenedioxythiophene) Anodes[J]. J Macromol Sci A Pure Appl Chem, 2004,41(12):1497-1511.

    35. [35]

      Bagchi D, Menon R. Conformational Modification of Conducting Polymer Chains by Solvents:Small-Angle X-Ray Scattering Study[J]. Chem Phys Lett, 2006,425(1/3):114-117.

    36. [36]

      Liu C C, Jiang F X, Huang M Y. Thermoelectric Performance of Poly(3, 4-Ethylenedioxy-thiophene)/Poly(Styrenesulfonate) Pellets and Films[J]. J Electron Mater, 2011,40(5):648-651.

    37. [37]

      Liu C C, Lu B Y, Yan J. Highly Conducting Free-Standing Poly(3, 4-ethylenedioxythiophene)/Poly(styrenesulfonate) Films with Improved Thermoelectric Performances[J]. Synth Met, 2010,160(23/24):2481-2485.

    38. [38]

      Kim W H, Kushto G P, Kim H. Effect of Annealing on the Electrical Properties and Morphology of a Conducting Polymer Used as an Anode in Organic Light-Emitting Devices[J]. J Polym Sci Part A Polym Phys, 2003,41(21):2522-2528.

    39. [39]

      Lin Y J, Lee J Y, Chen S M. Changing Electrical Properties of PEDOT:PSS by Incorporating with Dimethyl Sulfoxide[J]. Chem Phys Lett, 2016,664:213-218.

    40. [40]

      Yin H E, Wu C H, Kuo K S. Innovative Elastic and Flexible Conductive PEDOT:PSS Composite Films Prepared by Introducing Soft Latexes[J]. J Mater Chem, 2012,22(9):3800-3810.

    41. [41]

      Yin H E, Huang F H, Chiu W Y. Hydrophobic and Flexible Conductive Films Consisting of PEDOT:PSS-PBA/Fluorine-Modified Silica and Their Performance in Weather Stability[J]. J Mater Chem, 2012,22(28):14042-14051.

    42. [42]

      Deetuam C, Weise D, Samthong C. Electrical Conductivity Enhancement of Spin-Coated PEDOT:PSS Thin Film via Dipping Method in Low Concentration Aqueous DMSO[J]. J Appl Polym Sci, 2015,132(24):42108-42116.

    43. [43]

      Kim K J, Kim Y S, Kang W S. Inspection of Substrate-Heated Modified PEDOT:PSS Morphology for All Spray Deposited Organic Photovoltaics[J]. Sol Energ Mater Sol Cell, 2010,94(7):1303-1306.

    44. [44]

      Kim Y, Lee J, Kang H. Controlled Electro-Spray Deposition of Highly Conductive PEDOT:PSS Films[J]. Sol Energ Mater Sol Cell, 2012,98:39-45.

    45. [45]

      Ionescu-Zanetti C, Mechler A, Carter S A. Semiconductive Polymer Blends:Correlating Structure with Transport Properties at the Nanoscale[J]. Adv Mater, 2004,16(5):385-389.

    46. [46]

      Kim K S, Park S. Influence of Dispersion of Multi-Walled Carbon Nanotubes on the Electrochemical Performance of PEDOT-PSS Films[J]. J Mater Sci Eng B, 2011,176(3):204-209.

    47. [47]

      Zhang J, Gao L, Sun J. Incorporation of Single-Walled Carbon Nanotubes with PEDOT/PSS in DMSO for the Production of Transparent Conducting Films[J]. Diamond Relat Mater, 2012,22:82-87.

    48. [48]

      Wang G F, Tao X M, Xin J H. Modification of Conductive Polymer for Polymeric Anodes of Flexible Organic Light-Emitting Diodes[J]. Nanoscale Res Lett, 2009,4:613-617.

    49. [49]

      Yeo J S, Yun J M, Kim D Y. Significant Vertical Phase Separation in Solvent-Vapor-Annealed Poly(3, 4-ethylenedioxythiophene):Poly(styrene sulfonate) Composite Films Leading to Better Conductivity and Work Function for High-Performance Indium Tin Oxide-Free Optoelectronics[J]. ACS Appl Mater Interfaces, 2012,4(5):2551-2560.

    50. [50]

      Zhang B, Sun J, Katz H E. Promising Thermoelectric Properties of Commercial PEDOT:PSS Materials and Their Bi2Te3 Powder Composites[J]. ACS Appl Mater Interfaces, 2010,2(11):3170-3178.

    51. [51]

      Leclerc M, Najari A. Green Energy from a Blue Polymer[J]. Nat Mater, 2011,10:409-410.

    52. [52]

      Massonnet N, Carella A, Jaudouin O. Improvement of the Seebeck Coefficient of PEDOT:PSS by Chemical Reduction Combined with a Novel Method for Its Transfer Using Free-Standing Thin Films[J]. J Mater Chem C, 2014,2(7):1278-1283.

    53. [53]

      Jiang F X, Xu J K, Lu B Y. Thermoelectric Performance of Poly(3, 4-ethylenedioxythiophene):Poly(styrenesulfonate)[J]. Chinese Phys Lett, 2008,25(6):2202-2205.

    54. [54]

      Yue R R, Xu J K. Poly(3, 4-ethylenedioxythiophene) as Promising Organic Thermoelectric Materials:A Mini-review[J]. Synth Met, 2012,162(11/12):912-917.

    55. [55]

      Kong F F, Liu C C, Xu J K. Thermoelectric Performance Enhancement of Poly(3, 4-ethylenedioxythiophene):Poly(styrenesulfonate) Composite Films by Addition of Dimethyl Sulfoxide and Urea[J]. J Electron Mater, 2012,41(9):2431-2438.

    56. [56]

      Scholdt M, Do H, Lang J. Organic Semiconductors for Thermoelectric Applications[J]. J Electron Mater, 2010,39(9):1589-1592.

    57. [57]

      Tritt T M, Subramanian M A. Thermoelectric Materials, Phenomena, and Applications:A Bird's Eye View[J]. MRS Bull, 2006,31(3):188-198.

    58. [58]

      Luo J J, Billep D, Waechtler T. Enhancement of the Thermoelectric Properties of PEDOT:PSS Thin Films by Post-treatment[J]. J Mater Chem A, 2013,1(26):7576-7583.

    59. [59]

      Bubnova O, Khan Z U, Malti A. Optimization of the Thermoelectric Figure of Merit in the Conducting Polymer Poly(3, 4-ethylenedioxythiophene)[J]. Nat Mater, 2011,10(6):429-433.

    60. [60]

      Kim G H, Shao L, Zhang K. Engineered Doping of Organic Semiconductors for Enhanced Thermoelectric Efficiency[J]. Nat Mater, 2013,12(8):719-723.

    61. [61]

      Chen S, Lu B Y, Duan X M. Systematic Study on Chemical Oxidative and Solid-State Polymerization of Poly(3, 4-ethylenedithiathiophene)[J]. J Polym Sci Polym Chem, 2012,50(10):1967-1978.

    62. [62]

      Jiang Q L, Liu C C, Song H J. Improved Thermoelectric Performance of PEDOT:PSS Films Prepared by Polar-Solvent Vapor Annealing Method[J]. J Mater Sci-Mater El, 2013,24:4240-4246.

    63. [63]

      Kim D, Kim Y, Choi K. Improved Thermoelectric Behavior of Nanotube-Filled Polymer Composites with Poly(3, 4-ethylenedioxythiophene) Poly(styrenesulfonate)[J]. ACS Nano, 2010,4(1):513-523.

    64. [64]

      Elsheikha M H, Shnawah D A, Sabri M F M. A Review on Thermoelectric Renewable Energy:Principle Parameters that Affect Their Performance[J]. Renew Sustainable Energy Rev, 2014,30:337-355.

    65. [65]

      Groenendaal L B, Jonas F, Freitag D. Poly(3, 4-ethylenedioxythiophene) and Its Derivatives:Past, Present, and Future[J]. Adv Mater, 2000,12(7):481-494.

    66. [66]

      Qi Z G, Pickup P G. High Performance Conducting Polymer Supported Oxygen Reduction Catalysts[J]. Chem Commun, 1998(21):2299-2300.

    67. [67]

      Montibon E. Preparation of Electroconductive Paper by Deposition of Conducting Polymer[D]. Licentiate Thesis, Karlstad University Studies, 2009, 37: 1403-8099.

    68. [68]

      Lu B Y, Yuk H, Lin S T. Pure PEDOT:PSS hydrogels[J]. Nat Commun, 2019,101043.

    69. [69]

      Park H S, Ko S J, Park J S. Redox-Active Charge Carriers of Conducting Polymers as a Tuner of Conductivity and Its Potential Window[J]. Sci Rep-UK, 2013,3:2454-2459.

    70. [70]

      Chen S, Lu B Y, Xu J K. Preparation and Characterization of Aqueous Dispersions of Poly(3, 4-ethylenedithiathiophene-co-3, 4-ethylenedioxythiophene)/Poly(styrene sulfonate) and Their Conducting Films[J]. J Appl Polym Sci, 2013,129(4):1717-1725.

    71. [71]

      Zhang W N, Zhang W W, Xue Z X. Effect of Chalcogen Substitution on Aqueous Dispersions of Poly(3, 4-ethylenedioxythiophene)s:Poly(4-styrenesulfonate) and Their Flexible Conducting Films[J]. J Mater Sci-Mater El, 2018,29:18566-18572.

    72. [72]

      Wang Z P, Daize Mo D Z, Chen S. Poly(thieno[3, 4-b]-1, 4-oxathiane) and Poly(3, 4-ethylenedioxythiophene-cothieno[3, 4-b]-1, 4-oxathiane)/Poly(styrene sulfonic sodium):Preparation, Characterization, and Optoelectronic Performance[J]. J Polym Sci Pol Chem, 2015,53(19):2285-2297.

    73. [73]

      Huynh T P, Sonar P, Haick H. Advanced Materials for Use in Soft Self-healing Devices[J]. Adv Mater, 2017,29(19)1604973.

    74. [74]

      Hia I L, Vahedi V, Pasbakhsh P. Psyllium Arabinoxylan:A Versatile Biomaterial for Potential Medicinal and Pharmaceutical Applications[J]. Polym Rev, 2016,56(1):1-37.

    75. [75]

      Luo C S, Wan P, Yang H. Healable Transparent Electronic Devices[J]. Adv Funct Mater, 2017,7(23)1606339.

    76. [76]

      Kim J, Kumar R, Bandodkar A J. Advanced Materials for Printed Wearable Electrochemical Devices:A Review[J]. Adv Electron Mater, 2017,3(1):1600260-1600274.

    77. [77]

      Cao Y, Morrissey T G, Acome E. A Transparent, Self-healing, Highly Stretchable Ionic Conductor[J]. Adv Mater, 2017,29(10):1605099-1605107.

    78. [78]

      Zhang S M, Cicoira F. Water-Enabled Healing of Conducting Polymer Films[J]. Adv Mater, 2017,29(40):1703098-1703103.

    79. [79]

      Kee S, Haque M A, Corzo D. Self-healing and Stretchable 3D-Printed Organic Thermoelectrics[J]. Adv Funct Mater, 2019,29(51):1905426-1905432.

    80. [80]

      Xin X, Xue Z X, Gao N. Effects of Conductivity-Enhancement Reagents on Self-healing Properties of PEDOT:PSS Films[J]. Synth Met, 2020,268:116503-116510.

    81. [81]

      Xin X, Yu J R, Gao N. Freeze-Drying and Mechanical Redispersion of Aqueous PEDOT:PSS[J]. J Appl Polym Sci, 2020,138(5):49774-49783.

  • 加载中
    1. [1]

      Chengpeng Liu Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064

    2. [2]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    3. [3]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    4. [4]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    5. [5]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    6. [6]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    7. [7]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    10. [10]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    11. [11]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    12. [12]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    13. [13]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    14. [14]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    15. [15]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    16. [16]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    17. [17]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    18. [18]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    19. [19]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(114)
  • Abstract views(4400)
  • HTML views(1641)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return