Citation: CHEN Jiaqi, ZHOU Yan, SUN Jingwen, ZHU Junwu, WANG Xin, FU Yongsheng. Recent Progress of Metal Organic Frameworks-Based Hollow Materials[J]. Chinese Journal of Applied Chemistry, ;2020, 37(11): 1221-1235. doi: 10.11944/j.issn.1000-0518.2020.11.200208 shu

Recent Progress of Metal Organic Frameworks-Based Hollow Materials

  • Corresponding author: WANG Xin, wangx@njust.edu.cn FU Yongsheng, fuyongsheng@163.com
  • Received Date: 10 July 2020
    Revised Date: 5 August 2020
    Accepted Date: 24 August 2020

    Fund Project: the National Natural Science Foundation of China 51772156Supported by the National Natural Science Foundation of China(No.51772156, No.51872144), the Natural Science Foundation of Jiangsu Province(No.BK20180019, No.BK20171423)the National Natural Science Foundation of China 51772156the Natural Science Foundation of Jiangsu Province BK20180019the Natural Science Foundation of Jiangsu Province BK20171423

Figures(6)

  • Metal organic frameworks (MOFs) hollow materials, such as hydroxide, phosphide and sulfide, have attracted great attention in the applications of energy storage and conversion owing to their advantageous features of large specific area, low density, high loading capacity and excellent ion permeability. This review summarizes various synthetic strategies and formation mechanism for different structural MOFs-derived hollow materials. The promising electrochemical applications in the supercapacitors, lithium ion battery, and electrocatalysis are prominently elucidated. An outlook of development prospects and challenges for MOFs hollow structured derivatives is also discussed.
  • 加载中
    1. [1]

      Zheng S, Li X, Yan B. Transition-Metal (Fe, Co, Ni) Based Metal-Organic Frameworks for Electrochemical Energy Storage[J]. Adv Energy Mater, 2017,7(18)1602733. doi: 10.1002/aenm.201602733

    2. [2]

      Li X, Ma D D, Cao C. Inlaying Ultrathin Bimetallic MOF Nanosheets into 3D Ordered Macroporous Hydroxide for Superior Electrocatalytic Oxygen Evolution[J]. Small, 2019,15(35)1902218. doi: 10.1002/smll.201902218

    3. [3]

      Hwang Y K, Hong D Y, Chang J S. Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs:Consequences for Catalysis and Metal Encapsulation[J]. Angew Chem Int Ed, 2008,120(22):4212-4216. doi: 10.1002/ange.200705998

    4. [4]

      Wu S, Min H, Shi W. Multicenter Metal-Organic Framework-Based Ratiometric Fluorescent Sensors[J]. Adv Mater, 2020,32(3)1805871. doi: 10.1002/adma.201805871

    5. [5]

      Yuan H, Tao J, Li N. On-chip Tailorability of Capacitive Gas Sensors Integrated with Metal-Organic Framework Films[J]. Angew Chem Int Ed, 2019,58(40):14089-14094. doi: 10.1002/anie.201906222

    6. [6]

      Li L, Guo L, Pu S. A Calcium-Based Microporous Metal-Organic Framework for Efficient Adsorption Separation of Light Hydrocarbons[J]. Chem Eng J, 2019,358:446-455. doi: 10.1016/j.cej.2018.10.034

    7. [7]

      Ye Y, Ma Z, Lin R B. Pore Space Partition within a Metal-Organic Framework for Highly Efficient C2H2/CO2 Separation[J]. J Am Chem Soc, 2019,141(9):4130-4136. doi: 10.1021/jacs.9b00232

    8. [8]

      YU Wenting, ZHANG Hui, SUN Yuzhen. Efficient Removal of Arsenic by Metal Organic Framework UTSA-74 from Aqueous Solutions[J]. Chinese J Appl Chem, 2020,37(2):205-210.  

    9. [9]

      YU Hang, WANG Xizi, ZHU Xuya. Research Progress on Metal Organic Framework Material (MIL-101) and Its Functionalized Modification Materials for Environmental Pollution[J]. Chinese J Appl Chem, 2019,36(11):1221-1236.  

    10. [10]

      Cai W, Wang J, Chu C. Metal-Organic Framework-Based Stimuli-Responsive Systems for Drug Delivery[J]. Adv Sci, 2019,6(1)1801526. doi: 10.1002/advs.201801526

    11. [11]

      Suresh K, Matzger A J. Enhanced Drug Delivery by Dissolution of Amorphous Drug Encapsulated in a Water Unstable Metal-Organic Framework(MOF)[J]. Angew Chem Int Ed, 2019,131(47):16946-16950. doi: 10.1002/ange.201907652

    12. [12]

      Qin J, Wang S, Wang X. Visible-Light Reduction CO2 with Dodecahedral Zeolitic Imidazolate Framework ZIF-67 as an Efficient Co-catalyst[J]. Appl Catal B, 2017,209:476-482. doi: 10.1016/j.apcatb.2017.03.018

    13. [13]

      Cui W G, Zhang G Y, Hu T L. Metal-Organic Framework-Based Heterogeneous Catalysts for the Conversion of C1 Chemistry:CO, CO2 and CH4[J]. Coord Chem Rev, 2019,387:79-120. doi: 10.1016/j.ccr.2019.02.001

    14. [14]

      LIU Ting, LI Jingwei, LIU Yongxin. CuO Hollow Tubular Superstructure Fabricated from Cu2O@HKUST-1 Nanowire for CO Oxidation[J]. Chinese J Appl Chem, 2018,35(6):687-691.  

    15. [15]

      Cai D, Liu B, Wang D. Rational Synthesis of Metal-Organic Framework Composites, Hollow Structures and Their Derived Porous Mixed Metal Oxide Hollow Structures[J]. J Mater Chem A, 2016,4(1):183-192. doi: 10.1039/C5TA07085F

    16. [16]

      Liu B, Shioyama H, Akita T. Metal-Organic Framework as a Template for Porous Carbon Synthesis[J]. J Am Chem Soc, 2008,130(16):5390-5391.  

    17. [17]

      Chen Y Z, Wang C, Wu Z Y. From Bimetallic Metal-Organic Framework to Porous Carbon:High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis[J]. Adv Mater, 2015,27(34):5010-5016. doi: 10.1002/adma.201502315

    18. [18]

      Xia W, Zou R, Li A. A Metal-Organic Framework Route to in Situ Encapsulation of Co@Co3O4@C Core@Bishell Nanoparticles into a Highly Ordered Porous Carbon Matrix for Oxygen Reduction[J]. Energy Environ Sci, 2015,8(2):568-576. doi: 10.1039/C4EE02281E

    19. [19]

      Hu L, Huang Y, Zhang F. CuO/Cu2O Composite Hollow Polyhedrons Fabricated from Metal-Organic Framework Templates for Lithium-Ion Battery Anodes with a Long Cycling Life[J]. Nanoscale, 2013,5(10):4186-4190. doi: 10.1039/c3nr00623a

    20. [20]

      Cai Z X, Wang Z L, Kim J. Hollow Functional Materials Derived from Metal-Organic Frameworks:Synthetic Strategies, Conversion Mechanisms, and Electrochemical Applications[J]. Adv Mater, 2019,31(11)1804903. doi: 10.1002/adma.201804903

    21. [21]

      Chen J, Zhang L, Bai W. Unique Hollow-Concave CoMoSx Boxes with Abundant Mesoporous Structure for High-Performance Hybrid Supercapacitors[J]. Electrochim Acta, 2020,337135824. doi: 10.1016/j.electacta.2020.135824

    22. [22]

      Caruso F, Caruso R A, Mohwald H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating[J]. Science, 1998,282(5391):1111-1114. doi: 10.1126/science.282.5391.1111

    23. [23]

      Jiang Z, Li Z, Qin Z. LDH Nanocages Synthesized with MOF Templates and Their High Performance as Supercapacitors[J]. Nanoscale, 2013,5(23):11770-11775. doi: 10.1039/c3nr03829g

    24. [24]

      Liu D, Wan J, Pang G. Hollow Metal-Organic-Framework Micro/Nanostructures and Their Derivatives:Emerging Multifunctional Materials[J]. Adv Mater, 2019,31(38)1803291. doi: 10.1002/adma.201803291

    25. [25]

      Guan B Y, Yu L, Lou X W. Formation of Single-Holed Cobalt/N-Doped Carbon Hollow Particles with Enhanced Electrocatalytic Activity Toward Oxygen Reduction Reaction in Alkaline Media[J]. Adv Sci, 2017,4(10)1700247. doi: 10.1002/advs.201700247

    26. [26]

      Lee G, Na W, Kim J. Improved Electrochemical Performances of MOF-Derived Ni-Co Layered Double Hydroxide Complexes Using Distinctive Hollow-in-Hollow Structures[J]. J Mater Chem A, 2019,7(29):17637-17647. doi: 10.1039/C9TA05138D

    27. [27]

      Sun Z, Luo Y. Fabrication of Non-Collapsed Hollow Polymeric Nanoparticles with Shell Thickness in the Order of Ten Nanometres and Anti-reflection Coatings[J]. Soft Matter, 2011,7(3):871-875. doi: 10.1039/C0SM00983K

    28. [28]

      Yang Y, Wang F, Yang Q. Hollow Metal-Organic Framework Nanospheres via Emulsion-Based Interfacial Synthesis and Their Application in Size-Selective Catalysis[J]. ACS Appl Mater Interfaces, 2014,6(20):18163-18171. doi: 10.1021/am505145d

    29. [29]

      Jeong G Y, Ricco R, Liang K. Bioactive MIL-88A Framework Hollow Spheres via Interfacial Reaction In-Droplet Microfluidics for Enzyme and Nanoparticle Encapsulation[J]. Chem Mater, 2015,27(23):7903-7909. doi: 10.1021/acs.chemmater.5b02847

    30. [30]

      ZHANG Lina, SU Qi, YANG Gaoling. Preparation and Formation Mechanism of Hollow Ammonium Metatungstate Spheres by Spray Drying Method[J]. Powder Metall Ind, 2017,27(4):12-16.  

    31. [31]

      Wang T, Hu Q, Zhou M. Preparation of Ultra-Fine Powders from Polysaccharide-Coated Solid Lipid Nanoparticles and Nanostructured Lipid Carriers by Innovative Nano Spray Drying Technology[J]. Int J Pharm, 2016,511(1):219-222.  

    32. [32]

      Carné-Sánchez A, Imaz I, Cano-Sarabia M. A Spray-Drying Strategy for Synthesis of Nanoscale Metal-Organic Frameworks and Their Assembly into Hollow Superstructures[J]. Nat Chem, 2013,5(3):203-211. doi: 10.1038/nchem.1569

    33. [33]

      Alemán J V, Chadwick A V, He J. Definitions of Terms Relating to the Structure and Processing of Sols, Gels, Networks, and Inorganic-Organic Hybrid Materials (IUPAC Recommendations 2007)[J]. Pure Appl Chem, 2007,79(10):1801-1829. doi: 10.1351/pac200779101801

    34. [34]

      Huo J, Wang L, Irran E. Synthesis, Characterization and Magnetic Properties of Hollow Microspheres with Micro-Mesoporous Shells Assembled from Cobalt-Based Ferrocenyl Coordination Polymers[J]. J Colloid Interface Sci, 2012,367(1):92-100. doi: 10.1016/j.jcis.2011.07.099

    35. [35]

      Li J, Zeng H C. Hollowing Sn-Doped TiO2 Nanospheres via Ostwald Ripening[J]. J Am Chem Soc, 2007,129(51):15839-15847. doi: 10.1021/ja073521w

    36. [36]

      Qiao R, Zhang X L, Qiu R. Preparation of Magnetic Hybrid Copolymer-Cobalt Hierarchical Hollow Spheres by Localized Ostwald Ripening[J]. Chem Mater, 2007,19(26):6485-6491. doi: 10.1021/cm701904x

    37. [37]

      Wang W, Dahl M, Yin Y. Hollow Nanocrystals Through the Nanoscale Kirkendall Effect[J]. Chem Mater, 2013,25(8):1179-1189. doi: 10.1021/cm3030928

    38. [38]

      Zhang G, Wang W, Yu Q. Facile One-Pot Synthesis of PbSe and NiSe2 Hollow Spheres:Kirkendall-Effect-Induced Growth and Related Properties[J]. Chem Mater, 2009,21(5):969-974. doi: 10.1021/cm803307f

    39. [39]

      Guan C, Sumboja A, Wu H. Hollow Co3O4 Nanosphere Embedded in Carbon Arrays for Stable and Flexible Solid-State Zinc-Air Batteries[J]. Adv Mater, 2017,29(44)1704117. doi: 10.1002/adma.201704117

    40. [40]

      Park S K, Kim J K, Kang Y C. Electrochemical Properties of Uniquely Structured Fe2O3 and FeSe2/Graphitic-Carbon Microrods Synthesized by Applying a Metal-Organic Framework[J]. Chem Eng J, 2018,334:2440-2449. doi: 10.1016/j.cej.2017.12.014

    41. [41]

      Park G D, Cho J S, Lee J K. Na-Ion Storage Performances of FeSex and Fe2O3 Hollow Nanoparticles-Decorated Reduced Graphene Oxide Balls Prepared by Nanoscale Kirkendall Diffusion Process[J]. Sci Rep, 2016,6(1):1-10.  

    42. [42]

      Lee I, Choi S, Lee H J. Hollow Metal-Organic Framework Microparticles Assembled via a Self-templated Formation Mechanism[J]. Cryst Growth Des, 2015,15(11):5169-5173. doi: 10.1021/acs.cgd.5b00919

    43. [43]

      Xu X, Nosheen F, Wang X. Ni-Decorated Molybdenum Carbide Hollow Structure Derived from Carbon-Coated Metal-Organic Framework for Electrocatalytic Hydrogen Evolution Reaction[J]. Chem Mater, 2016,28(17):6313-6320. doi: 10.1021/acs.chemmater.6b02586

    44. [44]

      Wu L L, Wang Z, Long Y. Multishelled NixCo3-xO4 Hollow Microspheres Derived from Bimetal-Organic Frameworks as Anode Materials for High-Performance Lithium-Ion Batteries[J]. Small, 2017,13(17)1604270. doi: 10.1002/smll.201604270

    45. [45]

      Hu H, Guan B Y, Lou X W D. Construction of Complex CoS Hollow Structures with Enhanced Electrochemical Properties for Hybrid Supercapacitors[J]. Chemersity, 2016,1(1):102-113.  

    46. [46]

      Guan C, Liu X, Ren W. Rational Design of Metal-Organic Framework Derived Hollow NiCo2O4 Arrays for Flexible Supercapacitor and Electrocatalysis[J]. Adv Energy Mater, 2017,7(12)1602391. doi: 10.1002/aenm.201602391

    47. [47]

      Wu R, Wang D P, Rui X. In-Situ Formation of Hollow Hybrids Composed of Cobalt Sulfides Embedded within Porous Carbon Polyhedra/Carbon Nanotubes for High-Performance Lithium-Ion Batteries[J]. Adv Mater, 2015,27(19):3038-3044. doi: 10.1002/adma.201500783

    48. [48]

      Xu W, Xie W, Wang Y. Co3O4-x-Carbon@Fe2-yCoyO3 Heterostructural Hollow Polyhedrons for the Oxygen Evolution Reaction[J]. ACS Appl Mater Interfaces, 2017,9(34):28642-28649. doi: 10.1021/acsami.7b09213

    49. [49]

      Yang H, Kruger P E, Telfer S G. Metal-Organic Framework Nanocrystals as Sacrificial Templates for Hollow and Exceptionally Porous Titania and Composite Materials[J]. Inorg Chem, 2015,54(19):9483-9490. doi: 10.1021/acs.inorgchem.5b01352

    50. [50]

      Yu X Y, Yu L, Wu H B. Formation of Nickel Sulfide Nanoframes from Metal-Organic Frameworks with Enhanced Pseudocapacitive and Electrocatalytic Properties[J]. Angew Chem Int Ed, 2015,127(18):5421-5425. doi: 10.1002/ange.201500267

    51. [51]

      Zhang Q, Zhang T, Ge J. Permeable Silica Shell Through Surface-Protected Etching[J]. Nano Lett, 2008,8(9):2867-2871. doi: 10.1021/nl8016187

    52. [52]

      Hu M, Furukawa S, Ohtani R. Synthesis of Prussian Blue Nanoparticles with a Hollow Interior by Controlled Chemical Etching[J]. Angew Chem Int Ed, 2012,51(4):984-988. doi: 10.1002/anie.201105190

    53. [53]

      Zhou Y, Zeng H C. Simultaneous Synthesis and Assembly of Noble Metal Nanoclusters with Variable Micellar Templates[J]. J Am Chem Soc, 2014,136(39):13805-13817. doi: 10.1021/ja506905j

    54. [54]

      Tan Y C, Zeng H C. Defect Creation in HKUST-1via Molecular Imprinting:Attaining Anionic Framework Property and Mesoporosity for Cation Exchange Applications[J]. Adv Funct Mater, 2017,27(42)1703765. doi: 10.1002/adfm.201703765

    55. [55]

      Chen Y M, Yu L, Lou X W. Hierarchical Tubular Structures Composed of Co3O4 Hollow Nanoparticles and Carbon Nanotubes for Lithium Storage[J]. Angew Chem Int Ed, 2016,55(20):5990-5993. doi: 10.1002/anie.201600133

    56. [56]

      Kuo C H, Tang Y, Chou L Y. Yolk-Shell Nanocrystal@ZIF-8 Nanostructures for Gas-Phase Heterogeneous Catalysis with Selectivity Control[J]. J Am Chem Soc, 2012,134(35):14345-14348. doi: 10.1021/ja306869j

    57. [57]

      Wang J, Tang J, Ding B. Self-Template-Directed Metal-Organic Frameworks Network and the Derived Honeycomb-Like Carbon Flakes via Confnement Pyrolysis[J]. Small, 2018,14(14)1704461. doi: 10.1002/smll.201704461

    58. [58]

      Wang X, Huang F, Rong F. Unique MOF-derived Hierarchical MnO2 Nanotubes@NiCo-LDH/CoS2 Nanocage Materials as High Performance Supercapacitors[J]. J Mater Chem A, 2019,7(19):12018-12028. doi: 10.1039/C9TA01951K

    59. [59]

      Chen H, Wang M Q, Yu Y. Assembling Hollow Cobalt Sulfide Nanocages Array on Graphene-Like Manganese Dioxide Nanosheets for Superior Electrochemical Capacitors[J]. ACS Appl Mater Interfaces, 2017,9(40):35040-35047. doi: 10.1021/acsami.7b12069

    60. [60]

      Fu Y, Zhou Y, Peng Q. Hollow Mesoporous Carbon Spheres Enwrapped by Small-Sized and Ultrathin Nickel Hydroxide Nanosheets for High-Performance Hybrid Supercapacitors[J]. J Power Sources, 2018,402:43-52. doi: 10.1016/j.jpowsour.2018.09.022

    61. [61]

      Yu X Y, Yu L, Lou X W. Metal Sulfide Hollow Nanostructures for Electrochemical Energy Storage[J]. Adv Energy Mater, 2016,6(3)1501333. doi: 10.1002/aenm.201501333

    62. [62]

      Bai X, Liu Q, Lu Z. Rational Design of Sandwiched Ni-Co Layered Double Hydroxides Hollow Nanocages/Graphene Derived from Metal-Organic Framework for Sustainable Energy Storage[J]. ACS Sustainable Chem Eng, 2017,5(11):9923-9934. doi: 10.1021/acssuschemeng.7b01879

    63. [63]

      Guo D, Song X, Tan L. Metal-Organic Framework Template-Directed Fabrication of Well-Aligned Pentagon-Like Hollow Transition-Metal Sulfides as the Anode and Cathode for High-Performance Asymmetric Supercapacitors[J]. ACS Appl Mater Interfaces, 2018,10(49):42621-42629. doi: 10.1021/acsami.8b14839

    64. [64]

      He Q, Liu J, Li Z. Solvent-Free Synthesis of Uniform MOF Shell-Derived Carbon Confned SnO2/Co Nanocubes for Highly Reversible Lithium Storage[J]. Small, 2017,13(37)1701504. doi: 10.1002/smll.201701504

    65. [65]

      Zhang J, Wan J, Wang J. Hollow Multi-Shelled Structure with Metal-Organic-Framework-Derived Coatings for Enhanced Lithium Storage[J]. Angew Chem Int Ed, 2019,58(16):5266-5271. doi: 10.1002/anie.201814563

    66. [66]

      Shi Y, Wang J, Wang C. Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on MoS2 Nanosheets[J]. J Am Chem Soc, 2015,137(23):7365-7370. doi: 10.1021/jacs.5b01732

    67. [67]

      Nie Y, Li L, Wei Z. Recent Advancements in Pt and Pt-Free Catalysts for Oxygen Reduction Reaction[J]. Chem Soc Rev, 2015,44(8):2168-2201. doi: 10.1039/C4CS00484A

    68. [68]

      Wang C, Jiang J, Ding T. Monodisperse Ternary NiCoP Nanostructures as a Bifunctional Electrocatalyst for both Hydrogen and Oxygen Evolution Reactions with Excellent Performance[J]. Adv Mater Interfaces, 2016,3(4)1500454. doi: 10.1002/admi.201500454

    69. [69]

      Bai Y, Zhang H, Feng Y. Sandwich-Like CoP/C Nanocomposites as Efficient and Stable Oxygen Evolution Catalysts[J]. J Mater Chem A, 2016,4(23):9072-9079. doi: 10.1039/C6TA03392J

    70. [70]

      Hu E, Feng Y, Nai J. Construction of Hierarchical Ni-Co-P Hollow Nanobricks with Oriented Nanosheets for Efficient Overall Water Splitting[J]. Energy Environ Sci, 2018,11(4):872-880. doi: 10.1039/C8EE00076J

    71. [71]

      Deng D, Yu L, Chen X. Iron Encapsulated within Pod-Like Carbon Nanotubes for Oxygen Reduction Reaction[J]. Angew Chem Int Ed, 2013,125(1):389-393. doi: 10.1002/ange.201204958

    72. [72]

      Guan B Y, Lu Y, Wang Y. Porous Iron-Cobalt Alloy/Nitrogen-Doped Carbon Cages Synthesized via Pyrolysis of Complex Metal-Organic Framework Hybrids for Oxygen Reduction[J]. Adv Funct Mater, 2018,28(10)1706738. doi: 10.1002/adfm.201706738

    73. [73]

      Hu H, Han L, Yu M. Metal-Organic-Framework-Engaged Formation of Co Nanoparticle-Embedded Carbon@Co9S8 Double-Shelled Nanocages for Efficient Oxygen Reduction[J]. Energy Environ Sci, 2016,9(1):107-111. doi: 10.1039/C5EE02903A

    74. [74]

      Yu Z, Bai Y, Zhang N. Metal-Organic Framework-Derived Heterostructured ZnCo2O4@FeOOH Hollow Polyhedrons for Oxygen Evolution Reaction[J]. J Alloys Compd, 2020,832155067. doi: 10.1016/j.jallcom.2020.155067

    75. [75]

      Wang X, Li F, Li W. Hollow Bimetallic Cobalt-Based Selenide Polyhedrons Derived from Metal-Organic Framework:An Efficient Bifunctional Electrocatalyst for Overall Water Splitting[J]. J Mater Chem A, 2017,5(34):17982-17989. doi: 10.1039/C7TA03167J

    76. [76]

      Liu Y, Hua X, Xiao C. Heterogeneous Spin States in Ultrathin Nanosheets Induce Subtle Lattice Distortion to Trigger Efficient Hydrogen Evolution[J]. J Am Chem Soc, 2016,138(15):5087-5092. doi: 10.1021/jacs.6b00858

    77. [77]

      Lin Y, Sun K, Liu S. Construction of CoP/NiCoP Nanotadpoles Heterojunction Interface for Wide pH Hydrogen Evolution Electrocatalysis and Supercapacitor[J]. Adv Energy Mater, 2019,9(36)1901213. doi: 10.1002/aenm.201901213

    78. [78]

      Shi Y, Zhang B. Recent Advances in Transition Metal Phosphide Nanomaterials:Synthesis and Applications in Hydrogen Evolution Reaction[J]. Chem Soc Rev, 2016,45(6):1529-1541. doi: 10.1039/C5CS00434A

    79. [79]

      Zhang Y, Wang T, Wang Y. Metal Organic Frameworks Derived Hierarchical Hollow Ni0.85Se|P Composites for High-Performance Hybrid Supercapacitor and Efficient Hydrogen Evolution[J]. Electrochim Acta, 2019,303:94-104. doi: 10.1016/j.electacta.2019.02.069

  • 加载中
    1. [1]

      Yijing GUHuan PANGRongmei ZHU . Applications of nickel-based metal-organic framework compounds in supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2029-2038. doi: 10.11862/CJIC.20250186

    2. [2]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    3. [3]

      Ruige ZHANGZhe ZHANGHe ZHENGZhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185

    4. [4]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    5. [5]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    6. [6]

      Wenjuan SHIYuke LUXiuyuan LILei HOUYaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220

    7. [7]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    8. [8]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    9. [9]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    10. [10]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    11. [11]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    12. [12]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    13. [13]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    14. [14]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 100028-0. doi: 10.3866/PKU.WHXB202406009

    15. [15]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    16. [16]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    17. [17]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    18. [18]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    19. [19]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    20. [20]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

Metrics
  • PDF Downloads(85)
  • Abstract views(5023)
  • HTML views(1523)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return