Citation: CHEN Chonglai, ZHANG Wenxia, QIU Jianping, JIA Aiping, LUO Mengfei. Catalytic Decomposition of Ozone by Manganese Oxide Supported on Cordierite Honeycomb Ceramics[J]. Chinese Journal of Applied Chemistry, ;2020, 37(11): 1293-1300. doi: 10.11944/j.issn.1000-0518.2020.11.200143 shu

Catalytic Decomposition of Ozone by Manganese Oxide Supported on Cordierite Honeycomb Ceramics

  • Corresponding author: LUO Mengfei, mengfeiluo@zjnu.cn
  • Received Date: 14 May 2020
    Revised Date: 19 June 2020
    Accepted Date: 8 July 2020

Figures(8)

  • A series of different manganese oxides was mixed with aluminum gel and coated to cordierite honeycomb ceramics to produce monolithic catalysts for improving the application ability of catalysts. The performances of these monolithic catalysts in the decomposition of ozone at ambient temperature and pressure were investigated. The structures of these catalysts were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), BET specific surface area method and H2-programmed temperature reduction (H2-TPR) techniques. The results show that the activities of different manganese oxide supported monolithic catalysts are arranged in the following order:OMS-2 (Manganese oxide octahedral molecular sieve) > MnO2 > Mn2O3 > Mn3O4 > MnO. Compared with other manganese oxides, OMS-2 supported cordierite honeycomb ceramics monolithic catalyst has the highest activity to decompose ozone, probably due to the fact that OMS-2 has a larger specific surface area and better reducibility, which are favorable for the oxygen vacancy formation on the surface and participation in the decomposition of ozone. The results of this paper provide a theoretical basis for improving the performance of cordierite honeycomb ceramic supported monolithic catalyst for ozone decomposition.
  • 加载中
    1. [1]

      Subrahmanyam C, Bulushev D A, Kiwi-Minsker L. Dynamic Behaviour of Activated Carbon Catalysts during Ozone Decomposition at Room Temperature[J]. Appl Catal B:Environ, 2005,61:98-106. doi: 10.1016/j.apcatb.2005.04.013

    2. [2]

      Gu Y L, Liu S W, Xu X L. Preparation and Properties of Binary Metal Oxide Ozone Decomposition Catalyst[J]. Ind Catal, 2002,10:39-42.  

    3. [3]

      Liu S L, Ji J, Yu Y. Facile Synthesis of Amorphous Mesoporous Manganese Oxides for Efficient Catalytic Decomposition of Ozone[J]. Catal Sci Technol, 2018,8(16):4264-4273. doi: 10.1039/C8CY01111G

    4. [4]

      Jia J B, Zhang P Y, Chen L. Catalytic Decomposition of Gaseous Ozone over Manganese Dioxides with Different Crystal Structures[J]. Appl Catal B, 2016,189:210-218. doi: 10.1016/j.apcatb.2016.02.055

    5. [5]

      Ma J Z, Li X T, Zhang C B. Novel CeMnaOx Catalyst for Highly Efficient Catalytic Decomposition of Ozone[J]. Appl Catal B, 2020,264118498. doi: 10.1016/j.apcatb.2019.118498

    6. [6]

      Dhandapani B, Oyama S T. Gas Phase Ozone Decomposition Catalysts[J]. Appl Catal B, 1997,11:129-166. doi: 10.1016/S0926-3373(96)00044-6

    7. [7]

      WANG Caixia. The Synthesis and Ozone Decomposition Activity of Manganese Dioxide Catalysts[D]. Beijing: Beijing University of Chemical Technology, 2015(in Chinese).

    8. [8]

      Wang C X, Ma J Z, Liu D. The Effects of Mn2+ Precursors on the Structure and Ozone Decomposition Activity of Cryptomelane-Type Manganese Oxide (OMS-2) Catalysts[J]. J Phys Chem C, 2015,119:23119-23126. doi: 10.1021/acs.jpcc.5b08095

    9. [9]

      Radhakrishnan R, Oyama S T, Chen J G. Electron Transfer Effects in Ozone Decomposition on Supported Manganese Oxide[J]. J Phys Chem B, 2001,105:4245-4253. doi: 10.1021/jp003246z

    10. [10]

      LIU Rongqiong, ZHAO Min, WANG Ruifeng. Supported Metal Oxide Catalysts for Ozone Decomposition[J]. Jiangsu Environ Sci Tech, 2008,3:12-14.  

    11. [11]

      Jiang C, Zhang P, Zhang B. Facile Synthesis of Activated Carbon-Supported Porous Manganese Oxide via in Situ Reduction of Permanganate for Ozone Decomposition[J]. Ozone Sci Eng, 2013,35:308-315. doi: 10.1080/01919512.2013.795854

    12. [12]

      Wang M, Zhang P, Li J. The Effects of Mn Loading on the Structure and Ozone Decomposition Activity of MnOx Supported on Activated Carbon[J]. Chinese J Catal, 2014,35:335-341. doi: 10.1016/S1872-2067(12)60756-6

    13. [13]

      Han Y F, Chen F X, Zhong Z Y. Controlled Synthesis, Characterization, and Catalytic Properties of Mn2O3 and Mn3O4 Nanoparticles Supported on Mesoporous Silica SBA-15[J]. J Phys Chem B, 2006,110:24450-24456. doi: 10.1021/jp064941v

    14. [14]

      Niu X R, Wei H Y, Tang K. Solvothermal Synthesis of Nanostructured Mn2O3:Effect of Ni2+ and Co2+ Substitution on the Catalytic Activity of Nanowires[J]. RSC Adv, 2015,5:66271-66277. doi: 10.1039/C5RA14618F

    15. [15]

      Ramesh K, Chen L W, Chen F L. Re-investigating the CO Oxidation Mechanism over Unsupported MnO, Mn2O3 and MnO2 Catalysts[J]. Catal Today, 2008,131:477-482. doi: 10.1016/j.cattod.2007.10.061

    16. [16]

      JIA Jingbo. Study on Catalytic Decomposition of Gas Phase Ozone by Manganese Based Compounds[D]. Beijing: Tsinghua University, 2016(in Chinese).

    17. [17]

      Qu Y F, Guo J X, Chu Y H. The Influence of Mn Species on the SO2 Removal of Mn-based Activated Carbon Catalysts[J]. Appl Surf Sci, 2013,282:425-431. doi: 10.1016/j.apsusc.2013.05.146

    18. [18]

      Morales M R, Barbero B P, Cadus L E. Total Oxidation of Ethanol and Propane over Mn-Cu Mixed Oxide Catalysts[J]. Appl Catal B:Environ, 2006,67:229-236. doi: 10.1016/j.apcatb.2006.05.006

    19. [19]

      Wei L, Gibbs G V, Oyama S T, Mechanism of Ozone Decomposition on a Manganese Oxide Catalyst 2. Steady-State and Transient Kinetic Studies[J]. J Am Chem Soc, 1998,120:9047-9052. doi: 10.1021/ja9814422

  • 加载中
    1. [1]

      Jiahong WANGZekun XUTianjiao LUJinming HUANG . Performance of N, Mn doped semi-coke activated carbon catalyzed ozone oxidation for the degradation of tetracycline hydrochloride in water. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2549-2560. doi: 10.11862/CJIC.20250120

    2. [2]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    5. [5]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-0. doi: 10.3866/PKU.WHXB202406012

    6. [6]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    7. [7]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    9. [9]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    10. [10]

      Yuying JIANGJia LUOZhan GAO . Development status and prospects of solid oxide cell high entropy electrode catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1719-1730. doi: 10.11862/CJIC.20250124

    11. [11]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    12. [12]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    13. [13]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    14. [14]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    15. [15]

      Haiqiang Lin Weizheng Weng Jingdong Lin Mingshu Chen Xueming Fang Lefu Yang . Diverse Variables-Driven Catalytic Optimization: Experimental Enhancement and Instructional Design for Selective Methane Oxidation on Supported Nickel-based Catalysts. University Chemistry, 2025, 40(11): 327-336. doi: 10.12461/PKU.DXHX202505106

    16. [16]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    17. [17]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    18. [18]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    19. [19]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    20. [20]

      Kangjuan ChengChunxiao LiuYoupeng WangQiu JiangTingting ZhengXu LiChuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112

Metrics
  • PDF Downloads(15)
  • Abstract views(1866)
  • HTML views(618)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return