Citation: ZHOU Yao, LUO Ziqing, ZHOU Jialing, YUAN Lin, LI Zhongyan. Dipeptide-Based Phase-Selective Gelators for Removal of Oils and Toxic Dyes from Water[J]. Chinese Journal of Applied Chemistry, ;2020, 37(11): 1276-1284. doi: 10.11944/j.issn.1000-0518.2020.11.200073 shu

Dipeptide-Based Phase-Selective Gelators for Removal of Oils and Toxic Dyes from Water

  • Corresponding author: LI Zhongyan, lizhongyandongdong@126.com
  • Received Date: 16 March 2020
    Revised Date: 26 April 2020
    Accepted Date: 4 June 2020

    Fund Project: Supported by the Natural Science Foundation of Hunan Province of China(No.2018JJ3193)the Natural Science Foundation of Hunan Province of China 2018JJ3193

Figures(7)

  • A series of phase-selective gelators (3a-3e) was synthesized and characterized by 1H and 13C nuclear magnetic resonance spectroscopy and mass spectroscopy. The phase-selective activity assay was carried out in organic solvent and water mixture system and the results showed that compound 3c possessed high gelling abilities in the powder form for the removal of benzene, toluene, xylenes and petrol from their biphasic mixtures with water via a shaking process at room temperature. In addition, the efficient purification of toxic dye solutions has been realized by using 3d-benzyl alcohol gel as the adsorbent. Ultraviolet-visible spectroscopy provides the quantification means for the estimation of the purification efficacy. The simple operation and high removal efficiency of the organic solvents from water indicate the promising applicability of these dipeptide gelators in water purification.
  • 加载中
    1. [1]

      Ridgwaya P, Nixon T E, Leach J P. Occupational Exposure to Organic Solvents and Long-term Nervous System Damage Detectable by Brain Imaging, Neurophysiology or Histopathology[J]. Food Chem Toxicol, 2003,41(2):153-187. doi: 10.1016/S0278-6915(02)00214-4

    2. [2]

      Grodowska K, Parczewski A. Organic Solvents in the Pharmaceutical Industry[J]. Acta Pol Pharm, 2010,67:3-12.  

    3. [3]

      Shen J, Song Z, Qian X. Carbohydrate-Based Fillers and Pigments for Papermaking:A Review[J]. Carbohydr Polym, 2011,85(1):17-22. doi: 10.1016/j.carbpol.2011.02.026

    4. [4]

      Kristensen P, Irgens L M, Daltveit A K. Perinatal Outcome among Children of Men Exposed to Lead and Organic Solvents in the Printing Industry[J]. Am J Epidemiol, 1993,137(2):134-144. doi: 10.1093/oxfordjournals.aje.a116653

    5. [5]

      Wagner C C, Amos H M, Thackray C P. A Global 3-D Ocean Model for PCBs:Benchmark Compounds for Understanding the Impacts of Global Change on Neutral Persistent Organic Pollutants[J]. Global Biogeochem Cy, 2019,33(3):469-481.  

    6. [6]

      Mahltig B, Audenaert F, Bttcher H. Hydrophobic Silica Sol Coatings on Textiles-the Influence of Solvent and Sol Concentration[J]. J Sol-Gel Sci Technol, 2005,34:103-109. doi: 10.1007/s10971-005-1321-5

    7. [7]

      Indarto A, Yang D R, Azhari C H. Advanced VOCs Decomposition Method by Gliding Arc Plasma[J]. Chem Eng J, 2007,131(1):337-341.  

    8. [8]

      Comninellis C. Electrocatalysis in the Electrochemical Conversion/Combustion of Organic Pollutants for Waste Water Treatment[J]. Electrochim Acta, 1994,39(11):1857-1862.  

    9. [9]

      Borde X, Guieysse B, Delgado O. Synergistic Relationships in Algal-Bacterial Microcosms for the Treatment of Aromatic Pollutants[J]. Bioresource Technol, 2003,86(3):293-300. doi: 10.1016/S0960-8524(02)00074-3

    10. [10]

      Teng W, Bai N, Chen Z. Hierarchically Porous Carbon Derived from Metal-Organic Frameworks for Separation of Aromatic Pollutants[J]. Chem Eng J, 2018,346:388-396. doi: 10.1016/j.cej.2018.04.051

    11. [11]

      Kakavandi B, Jafari A J, Kalantary R R. Synthesis and Properties of Fe3O4-Activated Carbon Magnetic Nanoparticles for Removal of Aniline from Aqueous Solution:Equilibrium, Kinetic and Thermodynamic Studies[J]. Iran J Environ Health Sci Eng, 2013,1019. doi: 10.1186/1735-2746-10-19

    12. [12]

      Bhattacharya S, Krishnan-Ghosh Y. First Report of Phase Selective Gelation of Oil from Oil/Water Mixtures. Possible Implications Toward containing Oil Spills[J]. Chem Commun, 2001,2:185-186.  

    13. [13]

      Trivedi D R, Ballabh A, Dastidar P. An Easy to Prepare Organic Salt as a Low Molecular Mass Organic Gelator Capable of Selective Gelation of Oil from Oil/Water Mixtures[J]. Chem Mater, 2003,15:3971-3973. doi: 10.1021/cm034288d

    14. [14]

      Mukherjee S, Shang C, Chen X. N-Acetylglucosamine-Based Efficient, Phase-Selective Organogelators for Oil Spill Remediation[J]. Chem Commun, 2014,50:13940-13943. doi: 10.1039/C4CC06024E

    15. [15]

      Jadhav S R, Vemula P K, Kumar R. Sugar-Derived Phase-Selective Molecular Gelators as Model Solidifiers for Oil Spills[J]. Angew Chem Int Ed, 2010,49(42):7695-7698. doi: 10.1002/anie.201002095

    16. [16]

      Prathap A, Sureshan K M. A Mannitol Based Phase Selective Supergelator Offers a Simple, Viable and Greener Method to Combat Marine Oil Spills[J]. Chem Commun, 2012,48(43):5250-5252. doi: 10.1039/c2cc31631e

    17. [17]

      Kar T, Debnath S, Das D. Organogelation and Hydrogelation of Low-Molecular-Weight Amphiphilic Dipeptides:pH Responsiveness in Phase-Selective Gelation and Dye Removal[J]. Langmuir, 2009,25(15):8639-8648. doi: 10.1021/la804235e

    18. [18]

      Peng J, Liu K, Liu X. New Dicholesteryl-Based Gelators:Gelling Ability and Selective Gelation of Organic Solvents from Their Mixtures with Water at Room Temperature[J]. New J Chem, 2008,32:2218-2224. doi: 10.1039/b807576j

    19. [19]

      Kar T, Mukherjee S, Das P K. Organogelation Through Self-Assembly of Low-Molecular-Mass Amphiphilic Peptide[J]. New J Chem, 2014,38:1158-1167. doi: 10.1039/c3nj01437a

    20. [20]

      Xue M, Gao D, Liu K. Cholesteryl Derivatives as Phase-Selective Gelators at Room Temperature[J]. Tetrahedron, 2009,65:3369-3377. doi: 10.1016/j.tet.2009.02.056

    21. [21]

      Tsai C, Cheng Y, Shen L. Biscalix[J]. Org Lett, 2013,15(22):5830-5833. doi: 10.1021/ol402898u

    22. [22]

      Prathap A, Sureshan K M. Organogelator-Cellulose Composite for Practical and Eco-Friendly Marine Oil-Spill Recovery[J]. Angew Chem Int Ed, 2017,56(32):9405-9409. doi: 10.1002/anie.201704699

    23. [23]

      Guchhait S, Roy S. Efficient Peptide Based Gelators for Aromatic Organic Solvents and Vegetable Oils:Application in Phase Selective Gelation and Dye Entrapment[J]. J Sol-Gel Sci Tech, 2019,89(3):852-865. doi: 10.1007/s10971-018-4875-8

    24. [24]

      Ran X, Li Y, Gao Q. A Smart Phase-Selective Gelator for Recycling Aromatic Solvents, the Removal of Toxic Dyes, and Molecular Delivery[J]. Asian J Org Chem, 2017,6(1):95-101. doi: 10.1002/ajoc.201600480

    25. [25]

      Lim J Y C, Goh S S, Liow S S. Molecular Gel Sorbent Materials for Environmental Remediation and Wastewater Treatment[J]. J Mater Chem A, 2019,7(32):18759-18791. doi: 10.1039/C9TA05782J

    26. [26]

      Bachl J, Oehm S, Mayr J. Supramolecular Phase-Selective Gelation by Peptides Bearing Side-Chain Azobenzenes:Effect of Ultrasound and Potential for Dye Removal and Oil Spill Remediation[J]. Int J Mol Sci, 2015,16:11766-11784. doi: 10.3390/ijms160511766

    27. [27]

      Zhang X, Song J F, Ji W. Phase-Selective Gelators Based on Closed-Chain Glucose Derivatives:Their Applications in the Removal of Dissolved Aniline/Nitrobenzene, and Toxic Dyes from Contaminated Water[J]. J Mater Chem A, 2015,3(37):18953-18962. doi: 10.1039/C5TA01232E

    28. [28]

      Dutta S, Das D, Dasgupta A. Amino Acid Based Low-Molecular-Weight Ionogels as Efficient Dye-Adsorbing Agents and Templates for the Synthesis of TiO2 Nanoparticles[J]. Chem Eur J, 2010,16:1493-1505. doi: 10.1002/chem.200901917

    29. [29]

      Ren C L, Ng G H B, Wu H. Instant Room-Temperature Gelation of Crude Oil by Chiral Organogelators[J]. Chem Mater, 2016,28:4001-4008. doi: 10.1021/acs.chemmater.6b01367

  • 加载中
    1. [1]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    2. [2]

      Yan-Ran WengWen-Fu TianWen-Jing DingBi-He RenDe-Hou LiuJia-Ying TangFeng ZhouXiao-Gang ChenXian-Jiang SongHui-Peng LvYong Ai . Homochiral organic ferroelastics with plastic phase transition. Chinese Chemical Letters, 2025, 36(7): 110188-. doi: 10.1016/j.cclet.2024.110188

    3. [3]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    4. [4]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    5. [5]

      Xiao-Fang LvXiao-Yun RanYu ZhaoRui-Rui ZhangLi-Na ZhangJing ShiJi-Xuan XuQing-Quan KongXiao-Qi YuKun Li . Combing NIR-Ⅱ molecular dye with magnetic nanoparticles for enhanced photothermal theranostics with a 95.6% photothermal conversion efficiency. Chinese Chemical Letters, 2025, 36(4): 110027-. doi: 10.1016/j.cclet.2024.110027

    6. [6]

      Qian ZHANGYuxuan ZHANGYongguang YANGRuijie BAIYuandong LILing LI . FeMoS4/carbon fiber cloth composites: Preparation and application in dye-sensitized solar cells. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1916-1926. doi: 10.11862/CJIC.20240442

    7. [7]

      Yan-Ling LiYue XuChen-Hong WangRui WangShuang-Quan Zang . Dye-stabilized atomically precise copper clusters for enhanced photocatalytic hydrogen evolution. Chinese Chemical Letters, 2025, 36(10): 111256-. doi: 10.1016/j.cclet.2025.111256

    8. [8]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    9. [9]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

    10. [10]

      Yan ZhuJia LiuMeiheng LvTingting WangDongxiang ZhangRong ShangXin-Dong JiangJianjun DuGuiling Wang . Heavy-atom-free orthogonal configurative dye 1,7-di-anthra-aza-BODIPY for singlet oxygen generation. Chinese Chemical Letters, 2024, 35(10): 109446-. doi: 10.1016/j.cclet.2023.109446

    11. [11]

      Mengxing LiuJing LiuHongxing ZhangJianan TaoPeiwen FanXin LvWei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994

    12. [12]

      Tiancong ShiXi ChenXiao ZhouHongyi ZhangFuping HanLihan CaiWen SunJianjun DuJiangli FanXiaojun Peng . Azaindole-based asymmetric pentamethine cyanine dye for mitochondrial pH detection and near-infrared ratiometric fluorescence imaging of mitophagy. Chinese Chemical Letters, 2025, 36(6): 110408-. doi: 10.1016/j.cclet.2024.110408

    13. [13]

      Mingrui ZhangLingyu JinYuda ZhuJunfeng KouBo LiuJing ChenXiaolin ZhongXianghua WuJunfeng ZhangWenxiu Ren . A near-infrared Ⅱ fluorescent dye based on oxanthracene: Real-time imaging of drug-induced acute liver injury and photothermal therapy for tumor. Chinese Chemical Letters, 2025, 36(10): 110772-. doi: 10.1016/j.cclet.2024.110772

    14. [14]

      Xuelian ZhouLu MiaoWei ZhouQinglong QiaoZhaochao Xu . Dye-mediated FRET strategy for constructing semi-synthetic large Stokes shift far-red fluorescent protein. Chinese Chemical Letters, 2025, 36(10): 110984-. doi: 10.1016/j.cclet.2025.110984

    15. [15]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    16. [16]

      Shanqing YANGLulu WANGQiang ZHANGJiajia LIYilong LITongliang HU . A propane-selective metal-organic framework for inverse selective adsorption propane/propylene separation. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2138-2148. doi: 10.11862/CJIC.20250154

    17. [17]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    18. [18]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    19. [19]

      Chu ChuYuancheng QinCailing NiJianping Zou . Corrigendum to "Halogenated benzothiadiazole-based conjugated polymers as efficient photocatalysts for dye degradation and oxidative coupling of benzylamines" [Chinese Chemical Letters 33 (2022) 2736–2740]. Chinese Chemical Letters, 2025, 36(2): 110616-. doi: 10.1016/j.cclet.2024.110616

    20. [20]

      Guanyang Zeng Xingqiang Liu Liangqiao Wu Zijie Meng Debin Zeng Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462

Metrics
  • PDF Downloads(3)
  • Abstract views(844)
  • HTML views(156)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return