Citation: SUN Bin, LÜ Jianhua, JIN Jing, ZHAO Guiyan. Application of Quartz Crystal Microbalance with Dissipation in Biomedical Polymer Materials[J]. Chinese Journal of Applied Chemistry, ;2020, 37(10): 1127-1136. doi: 10.11944/j.issn.1000-0518.2020.10.200078 shu

Application of Quartz Crystal Microbalance with Dissipation in Biomedical Polymer Materials

  • Corresponding author: JIN Jing,  ZHAO Guiyan, gyzhao@lnpu.edu.cn; jjin@ciac.ac.cn
  • Received Date: 19 March 2020
    Revised Date: 26 April 2020
    Accepted Date: 22 May 2020

    Fund Project: the Scientific Research Cultivation Fund of LSHU 2016PY-014the Talent Scientific Research Fund of LSHU 2016XJJ-001Supported by the National Science Foundation of China for General Program(No.51673196, No.21674115), the Scientific Research Cultivation Fund of LSHU(No.2016PY-014), the Talent Scientific Research Fund of LSHU(No.2016XJJ-001) and the Scientific Research Fund of Liaoning Provincial Education Department(No.L2019013)the National Science Foundation of China for General Program 21674115the National Science Foundation of China for General Program 51673196the Scientific Research Fund of Liaoning Provincial Education Department L2019013

Figures(6)

  • Quartz crystal microbalance (QCM) is an analytical technique based on the piezoelectric effect of quartz crystal, which can provide the information on the mass, thickness and viscoelasticity of the adsorbed layer on the surface of quartz crystal in real time, and thus obtain the surface molecular interaction relationship. Because of the unique viscoelastic analysis, QCM with dissipation (QCM-D) has been rapidly applied in the field of polymer material, especially for biomedical polymer materials. It has been used to evaluate the surface and interface interaction, mechanical property, and biocompatibility of biomedical biomaterials. In this review, the basic principle and theoretical model of QCM-D are briefly introduced. The application of QCM-D in the conformation of polymer chain, protein adsorption, biomolecular interactions, drug release and hydrogels in recent years are emphatically reviewed, and finally the future development trends of QCM-D is forecasted.
  • 加载中
    1. [1]

      Konash P L, Bastiaans G J. Piezoelectric Crystals as Detectors in Liquid Chromatography[J]. Anal Chem, 1980,52(12):1929-1931. doi: 10.1021/ac50062a033

    2. [2]

      Du Y Q, Jin J, Jiang W. A Study of Polyethylene Glycol Backfilling for Enhancing Target Recognition Using QCM-D and DPI[J]. J Mater Chem B, 2018,6(39):6217-6224. doi: 10.1039/C8TB01526K

    3. [3]

      DU Binyang, FAN Xiao, CAO Zeng. Applications and Outlooks of Quartz Crystal Microbalance in Studies of Polymer Thin Flims[J]. Chinese J Anal Chem, 2010,5(38):151-158.  

    4. [4]

      Escobar Teran F, Arnau A, Garcia J V. Gravimetric and Dynamic Deconvolution of Global EQCM Response of Carbon Nanotube Based Electrodes by AC-Electrogravimetry[J]. Electrochem Commun, 2016,70:73-77. doi: 10.1016/j.elecom.2016.07.005

    5. [5]

      Hu Y, Jin J, Lang H. pH Dependence of Adsorbed Fibrinogen Conformation and Its Effect on Platelet Adhesion[J]. Langmuir, 2016,32(16):4086-4094. doi: 10.1021/acs.langmuir.5b04238

    6. [6]

      Olsson A L J, Wargenau A, Tufenkji N. Optimizing Bacteriophage Surface Densities for Bacterial Capture and Sensing in Quartz Crystal Microbalance with Dissipation Monitoring[J]. ACS Appl Mater Interfaces, 2016,8(22):13698-13706. doi: 10.1021/acsami.6b02227

    7. [7]

      Lv J H, Jin J, Chen J Y. Antifouling and Antibacterial Properties Constructed by Quaternary Ammonium and Benzyl Ester Derived from Lysine Methacrylamide[J]. ACS Appl Mater Interfaces, 2019,11(28):25556-25568. doi: 10.1021/acsami.9b06281

    8. [8]

      Qin B, Yin Z, Tang X. Supramolecular Polymer Chemistry:From Structural Control to Functional Assembly[J]. Prog Polym Sci, 2019,10101167.  

    9. [9]

      Zhang Y, Liu X, Zeng L. Tissue Engineering:Polymer Fiber Scaffolds for Bone and Cartilage Tissue Engineering[J]. Adv Funct Mater, 2019,29(36)1970246. doi: 10.1002/adfm.201970246

    10. [10]

      Zhang Y, Du B Y, Chen X. Convergence of Dissipation and Impedance Analysis of Quartz Crystal Microbalance Studies[J]. Anal Chem, 2009,81(2):642-648. doi: 10.1021/ac8019762

    11. [11]

      Hajiraissi R, Hanke M, Yang Y. Adsorption and Fibrillization of Islet Amyloid Polypeptide at Self-assembled Monolayers Studied by QCM-D, AFM, and PM-IRRAS[J]. Langmuir, 2018,34(11):3517-3524. doi: 10.1021/acs.langmuir.7b03626

    12. [12]

      Hu Y, Jin J, Han Y Y. Study of Fibrinogen Adsorption on Poly(Ethylene Glycol)-Modified Surfaces Using a Quartz Crystal Microbalance with Dissipation and a Dual Polarization Interferometry[J]. RSC Adv, 2014,4(15):7716-7724. doi: 10.1039/c3ra46934d

    13. [13]

      Heidary N, Kornienko N, Kalathil S. Disparity of Cytochrome Utilization in Anodic and Cathodic Extracellular Electron Transfer Pathways of Geobacter Sulfurreducens Biofilms[J]. J Am Chem Soc, 2020,142(11):5194-5203. doi: 10.1021/jacs.9b13077

    14. [14]

      Marx K A. Quartz Crystal Microbalance:A Useful Tool for Studying Thin Polymer Films and Complex Biomolecular Systems at the Solution-Surface Interface[J]. Biomacromolecules, 2003,4(5):1099-1120. doi: 10.1021/bm020116i

    15. [15]

      Sauerbrey G. Verwendung Von Schwingquarzen Zur Wägung Dünner Schichten Und Zur Mikrowagung[J]. Zeitschrift Für Physik, 1959,155(2):206-222.  

    16. [16]

      Kanazawa K K, Gordon J G. Frequency of a Quartz Microbalance in Contact with Liquid[J]. Anal Chem, 1985,57(8):1770-1771. doi: 10.1021/ac00285a062

    17. [17]

      Rodahl M, Kasemo B. On the Measurement of Thin Liquid Overlayers with the Quartz-Crystal Microbalance[J]. Sens Actuators A, 1996,54(1-3):448-456. doi: 10.1016/S0924-4247(97)80002-7

    18. [18]

      Chen T, Yang H, Gao H W. Adsorption and Orientation of 3, 4-Dihydroxy-L-Phenylalanine onto Tunable Monolayer Films[J]. J Phys Chem C, 2017,121(21):11544-11551. doi: 10.1021/acs.jpcc.7b02795

    19. [19]

      Du B Y, Johannsmann D. Operation of the Quartz Crystal Microbalance in Liquids:Derivation of the Elastic Compliance of a Film from the Ratio of Bandwidth Shift and Frequency Shift[J]. Langmuir, 2004,20(7):2809-2812. doi: 10.1021/la035965l

    20. [20]

      Ma H W, Zhu Z, Li D. A Quartz Crystal Microbalance-Based Molecular Ruler for Biopolymers[J]. Chem Commun, 2010,46(6):949-951. doi: 10.1039/B919179H

    21. [21]

      DeNolf G C, Sturdy L F, Shull K R. High-Frequency Rheological Characterization of Homogeneous Polymer Films with the Quartz Crystal Microbalance[J]. Langmuir, 2014,30(32):9731-9740. doi: 10.1021/la502090a

    22. [22]

      Sadman K, Wiener C G, Weiss R A. Quantitative Rheometry of Thin Soft Materials Using the Quartz Crystal Microbalance with Dissipation[J]. Anal Chem, 2018,90(6):4079-4088. doi: 10.1021/acs.analchem.7b05423

    23. [23]

      Bruckenstein S, Michalski M, Fensore A. Dual Quartz Crystal Microbalance Oscillator Circuit. Minimizing Effects Due to Liquid Viscosity, Density, and Temperature[J]. Anal Chem, 1994,66(11):1847-1852. doi: 10.1021/ac00083a012

    24. [24]

      HE Jian'an, FU Long, HUANG Mo. The Development of Quartz Crystal Microbalance[J]. Sci Sin Chim, 2011,41(11):7-26.  

    25. [25]

      Liu G M, Zhang G Z. Reentrant Behavior of Poly(N-Isopropylacrylamide) Brushes in Water-Methanol Mixtures Investigated with a Quartz Crystal Microbalance[J]. Langmuir, 2005,21(5):2086-2090. doi: 10.1021/la047326w

    26. [26]

      Zhang G Z. Study on Conformation Change of Thermally Sensitive Linear Grafted Poly(N-isopropylacrylamide) Chains by Quartz Crystal Microbalance[J]. Macromolecules, 2004,37(17):6553-6557. doi: 10.1021/ma035937+

    27. [27]

      Liu G M, Zhang G Z. Collapse and Swelling of Thermally Sensitive Poly(N-isopropylacrylamide) Brushes Monitored with a Quartz Crystal Microbalance[J]. J Phys Chem B, 2005,109(2):743-747. doi: 10.1021/jp046903m

    28. [28]

      He C, Liu G M, Wang C. Collapse and Swelling of Poly(N-isopropylacrylamide-co-Sodium Acrylate) Copolymer Brushes Grafted on a Flat SiO2 Surface[J]. J Polym Sci Part B Polym Phys, 2006,44(4):770-778. doi: 10.1002/polb.20734

    29. [29]

      Liu G M, Cheng H, Yan L F. Study of the Kinetics of the Pancake-to-Brush Transition of Poly(N-isopropylacrylamide) Chains[J]. J Phys Chem B, 2005,109(47):22603-22607. doi: 10.1021/jp0538417

    30. [30]

      Liu G M, Yan L F, Chen X. Study of the Kinetics of Mushroom-to-Brush Transition of Charged Polymer Chains[J]. Polymer, 2006,47(9):3157-3163. doi: 10.1016/j.polymer.2006.02.091

    31. [31]

      Ji H F, Xu H, Jin L Q. Surface Engineering of Low-Fouling and Hemocompatible Polyethersulfone Membranes via In-Situ Ring-Opening Reaction[J]. J Membr Sci, 2019,581:373-382. doi: 10.1016/j.memsci.2019.03.082

    32. [32]

      Wang X W, Liu G M, Zhang G Z. Effect of Surface Wettability on Ion-Specific Protein Adsorption[J]. Langmuir, 2012,28(41):14642-14653. doi: 10.1021/la303001j

    33. [33]

      Wu B, Liu G, Zhang G. Stiff Chains Inhibit and Flexible Chains Promote Protein Adsorption to Polyelectrolyte Multilayers[J]. Soft Matter, 2019,10(21)3806.  

    34. [34]

      Chen Y, Song Q L, Zhao J P. Betulin-Constituted Multiblock Amphiphiles for Broad-Spectrum Protein Resistance[J]. ACS Appl Mater Interfaces, 2018,10(7):6593-6600. doi: 10.1021/acsami.7b16255

    35. [35]

      JIN Jing, HU Yu, HAN Yuanyuan. Modified Surface by Poly(Ethylene Glycol) with Looped Conformation and Its Superior Anticoagulant Property[J]. Sci Sin Chim, 2018,48(8):972-980.  

    36. [36]

      Lv J H, Jin J, Han Y Y. Effect of End-Grafted PEG Conformation on the Hemocompatibility of Poly(Styrene-b-(Ethylene-co-Butylene)-b-Styrene)[J]. J Biomater Sci, 2019,30(17):1670-1685. doi: 10.1080/09205063.2019.1657621

    37. [37]

      John T, Greene G W, Patil N A. Adsorption of Amyloidogenic Peptides to Functionalized Surfaces Is Biased by Charge and Hydrophilicity[J]. Langmuir, 2019,35(45):14522-14531. doi: 10.1021/acs.langmuir.9b02063

    38. [38]

      Gomez Maldonado D, Vega Erramuspe I B, Filpponen I. Cellulose-Cyclodextrin Co-polymer for the Removal of Cyanotoxins on Water Sources[J]. Polymers, 2019,11(12)2075. doi: 10.3390/polym11122075

    39. [39]

      Song J, Chen C, Zhu S. Processing Bulk Natural Wood into a High-Performance Structural Material[J]. Nature, 2018,554(7691):224-228. doi: 10.1038/nature25476

    40. [40]

      Kong W, Wang C, Jia C. Muscle-Inspired Highly Anisotropic, Strong, Ion-Conductive Hydrogels[J]. Adv Mater, 2018,30(39)1801934. doi: 10.1002/adma.201801934

    41. [41]

      Zhang X, Zhu Y, Wang X. Revealing Adsorption Behaviors of Amphoteric Polyacrylamide on Cellulose Fibers and Impact on Dry Strength of Fiber Networks[J]. Polymers, 2019,11(11)1886. doi: 10.3390/polym11111886

    42. [42]

      Jiang C, Cao T, Wu W. Novel Approach to Prepare Ultrathin Lignocellulosic Film for Monitoring Enzymatic Hydrolysis Process by Quartz Crystal Microbalance[J]. ACS Sustainable Chem Eng, 2017,5(5):3837-3844. doi: 10.1021/acssuschemeng.6b02884

    43. [43]

      Lee C H, Li Y J, Huang C C. Poly(ε-caprolactone) Nanocapsule Carriers with Sustained Drug Release:Single Dose for Long-Term Glaucoma Treatment[J]. Nanoscale, 2017,9(32):11754-11764. doi: 10.1039/C7NR03221H

    44. [44]

      Campos J, Jiménez C, Trigo C. Quartz Crystal Microbalance with Dissipation Monitoring:A Powerful Tool for Bionanoscience and Drug Discovery[J]. J Bionanosci, 2015,9(4):249-260. doi: 10.1166/jbns.2015.1310

    45. [45]

      Deligoz H, Tieke B. QCM-D Study of Layer-by-Layer Assembly of Polyelectrolyte Blend Films and Their Drug Loading-Release Behavior[J]. Colloids Surf A Physicochem Eng Asp, 2014,441:725-736. doi: 10.1016/j.colsurfa.2013.10.033

    46. [46]

      Li J Y, Qu X, Payne G F. Biospecific Self-assembly of a Nanoparticle Coating for Targeted and Stimuli-Responsive Drug Delivery[J]. Adv Funct Mater, 2015,25(9):1404-1417. doi: 10.1002/adfm.201403636

    47. [47]

      Pashuck E T, Duchet B J R, Hansel C S. Controlled Sub-nanometer Epitope Spacing in a Three-Dimensional Self-assembled Peptide Hydrogel[J]. ACS Nano, 2016,10(12):11096-11104. doi: 10.1021/acsnano.6b05975

    48. [48]

      Chirra H D, Hilt J Z. Nanoscale Characterization of the Equilibrium and Kinetic Response of Hydrogel Structures[J]. Langmuir, 2010,26(13):11249-11257. doi: 10.1021/la1005677

    49. [49]

      Cao Z, Du B Y, Chen T. Fabrication and Properties of Thermosensitive Organic/Inorganic Hybrid Hydrogel Thin Films[J]. Langmuir, 2008,24(10):5543-5551. doi: 10.1021/la8000653

    50. [50]

      Mas Vinyals A, Gilabert Porres J, Figueras Esteve L. Improving Linking Interface Between Collagen-Based Hydrogels and Bone-Like Substrates[J]. Colloid Surf B, 2019,181:86-871.  

    51. [51]

      Zhang M X, Wiener C G, Sepulveda-Medina P I. Influence of Sodium Salts on the Swelling and Rheology of Hydrophobically Cross-Linked Hydrogels Determined by QCM-D[J]. Langmuir, 2019,35(50):16612-16623. doi: 10.1021/acs.langmuir.9b03063

  • 加载中
    1. [1]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    2. [2]

      Yan Wang Haolong Li Chengji Zhao Zheng Chen Quan Lin Yupeng Guo Jianxin Mu Kun Liu Zhong-Yuan Lu Junqi Sun . Construction Practice of the National First-Class Undergraduate Major in Polymer Materials and Engineering at Jilin University. University Chemistry, 2025, 40(4): 46-53. doi: 10.12461/PKU.DXHX202403083

    3. [3]

      Xuejun Lai Anqiang Zhang Tao Wang Shuizhu Wu Guangzhao Zhang . Construction and Practice of the First-Class Undergraduate Education Program for Polymer Materials and Engineering Major Students with “Solid Foundation, Strong Capability and High Potential”. University Chemistry, 2025, 40(4): 119-125. doi: 10.12461/PKU.DXHX202407012

    4. [4]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    5. [5]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    6. [6]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    7. [7]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    8. [8]

      Bei Liu Heng Li Mei Yang Yijiang Liu . Teaching Reform and Exploration in Polymer Chemistry with an “Experiment-Intensified” Approach for Masters in Materials and Chemical Engineering. University Chemistry, 2025, 40(4): 10-14. doi: 10.3866/PKU.DXHX202401010

    9. [9]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    10. [10]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    11. [11]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    12. [12]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    13. [13]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    14. [14]

      Yi Li . Exploring the New Teaching Mode of the General Education of Polymer Science by Integrating Aesthetics, Ideological and Political Ideas: Teaching Practice of the General Education Course “Appreciation of Aesthetics in the Polymer World”. University Chemistry, 2025, 40(4): 20-26. doi: 10.12461/PKU.DXHX202402031

    15. [15]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    16. [16]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    17. [17]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    18. [18]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    19. [19]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    20. [20]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

Metrics
  • PDF Downloads(9)
  • Abstract views(1238)
  • HTML views(304)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return