Citation: SAN Xiaoguang, GONG Xiaohui, LU Yiming, QIAO Tongtong, YOU Yu, MENG Dan. Synthesis of NiO-WO3 Nanocubes and Their Application in Detecting Formaldehyde[J]. Chinese Journal of Applied Chemistry, ;2020, 37(10): 1203-1210. doi: 10.11944/j.issn.1000-0518.2020.10.200059 shu

Synthesis of NiO-WO3 Nanocubes and Their Application in Detecting Formaldehyde

  • Corresponding author: MENG Dan, mengdan0610@hotmail.com
  • Received Date: 4 March 2020
    Revised Date: 22 May 2020
    Accepted Date: 10 June 2020

    Fund Project: Liaoning Provincial Natural Science Foundation 2019-ZD-0072the National Natural Science Foundation of China 61973223Supported by the National Natural Science Foundation of China(No.61973223), and Liaoning Provincial Natural Science Foundation(No.2019-ZD-0072)

Figures(6)

  • The NiO-WO3 nanocubes are synthesized by hydrothermal synthesis. The p-n junction is formed by introducing p-type NiO to WO3 nanocubes. The products are characterized by XRD and SEM and have cube-like structures which are successfully retained after introducing NiO. The formaldehyde gas sensing properties are systematically investigated between the pure and NiO-WO3 nanocubes. The NiO-WO3 nanocube sensor exhibits enhanced response and lower operating temperature compared to the pure one. Especially, the 5% molar fraction of NiO-WO3 nanocube sensor exhibits the excellent sensing properties. Its highest response to 0.134 mg/L formaldehyde gas is 18.5 at 200 ℃. In addition, fast response and recovery, good reproducibility and stability, and good selectivity to formaldehyde are also obtained, indicating the formation of NiO-WO3 heterojunction in favor of improving the sensing properties. Meanwhile, the sensing enhancement mechanism of the NiO-WO3 nanocubes is also discussed, which is related to the formation of hetrojunction at interface and the high catalytic activity of NiO.
  • 加载中
    1. [1]

      Gu C P, Cui Y W, Wang L Y. Synthesis of the Porous NiO/SnO2 Microspheres and Microcubes and Their Enhanced Formaldehyde Gas Sensing Performance[J]. Sens Actuators B, 2017,241:298-307. doi: 10.1016/j.snb.2016.10.060

    2. [2]

      Kim J Y, Choi N J, Park H J. A Hollow Assembly and Its Three-dimensional Network Formation of Single-Crystalline Co3O4 Nanoparticles for Ultrasensitive Formaldehyde Gas Sensors[J]. J Phys Chem C, 2014,118:25994-26002. doi: 10.1021/jp505791v

    3. [3]

      Hakim M, Broza Y Y, Barash O. Volatile Organic Compounds of Lung Cancer and Possible Biochemical Pathways[J]. Chem Rev, 2012,112:5949-5966. doi: 10.1021/cr300174a

    4. [4]

      Wang Z, Hou C, De Q. One-Step Synthesis of Co-Doped In2O3 Nanorods for High Response of Formaldehyde Sensor at Low Temperature[J]. ACS Sens, 2018,3:468-475. doi: 10.1021/acssensors.7b00896

    5. [5]

      Mirzaei A, Neri G. Microwave-assisted Synthesis of Metal Oxide Nanostructures for Gas Sensing Application:A Review[J]. Sens Actuators B, 2016,237:749-775. doi: 10.1016/j.snb.2016.06.114

    6. [6]

      SUN Xiangwei. Modification of Tungsten Oxide Semiconductor Photocatalyst and Its Photoelectrocatalytic[D]. Shandong: Shandong University, 2019(in Chinese).

    7. [7]

      NIU Fengxing, CHEN Yu, ZHANG Jiahao. Preparation of Tungsten Trioxide/Zinc Oxide and Its Photocatalytic Degradation of Dye Wastewater[J]. Spec Petrochem, 2019,36(2):22-26.  

    8. [8]

      HE Ke, LIU Shantang. Acetone Sensing Properties of SnO2-WO3 Metal Oxide Composites[J]. J Wuhan Inst Technol, 2019,41(4):0311-05.  

    9. [9]

      GULIMEIRE Sireyi, ZHANG Yucai. Synthesis and Gas-Sensing Properties of Nano Tungsten Trioxide[J]. Chem Ind Times, 2017,31(12):6-7.  

    10. [10]

      LIU Dianxin, TIAN Zhiming, LIN Fan. Preparation of Fe Doped WO3 Catalyst and Its Catalytic Activity for Degradation of Dyes[J]. Ind Catal, 2019,27(3):38-42.  

    11. [11]

      GAO Zhanzhong. First Studies of WO3 as Anode Material for Lithium Ion Bateeries[D]. Sichuan: University of Electronic Science and Technology of China, 2017: 63-66(in Chinese).

    12. [12]

      YU Haoxiong. Research on H2S-Sensing Properties and Mechanism of Nanocrystalline WO3 films[D]. Hubei: Huazhong University of Science & Technology, 2017: 12-15(in Chinese).

    13. [13]

      CHEN Jian, XING Xiaxia, FENG Dongliang. Preparation of Pt/WO3 by Microwave-Assisted for Detection of Biomarker of Acetone[J]. J Funct Mater Devices, 2019,25(1):1-6.  

    14. [14]

      HU Ming, QIN Yue, ZHAO Boshuo. Study on Fabrication and NO2 Sensing Properties of Porous Silicon Modified with WO3 Nanowires[J]. Chinese J Sens Actuators, 2019,32(2):167-171.  

    15. [15]

      ZENG Yan, HUA Zhongqiu, TIAN Xuemin. Gas Sensing Properties of WO3 Nanoflakes Loaded with Ru for NH3 Detection[J]. J Chinese Ceram Soc, 2018,46(1):70-77.  

    16. [16]

      Yang H M, Tao Q F, Zhang X C. Solid-state Synthesis and Electrochemical Property of SnO2/NiO Nanomaterials[J]. J Alloys Compd, 2008,459:98-102. doi: 10.1016/j.jallcom.2007.04.258

    17. [17]

      Song K, Meng X Q, Zhang J L. A Simple Grinding-Calcination Approach to Prepare the Co3O4-In2O3 Heterojunction Structure with High-Performance Gas-Sensing Property Toward Ethanol[J]. RSC Adv, 2016,6:105262-105269. doi: 10.1039/C6RA23196A

    18. [18]

      Korotcenkov G, Cho B K. Engineering Approaches for the Improvement of Conductometric Gas Sensor Parameters Part 1.Improvement of Sensor Sensitivity and Selectivity(Short Survey)[J]. Sens Actuators B, 2013,188:709-728. doi: 10.1016/j.snb.2013.07.101

    19. [19]

      Mirzaei A, Leonardi S G, Neri G. Detection of Hazardous Volatile Organic Compounds (VOCs) by Metal Oxide Nanostructures-Based Gas Sensors:A Review[J]. Ceram Int, 2016,42:15119-15141. doi: 10.1016/j.ceramint.2016.06.145

    20. [20]

      Lin Y, Wei W, Li Y J. Preparation of Pd Nanoparticle-Decorated Hollow SnO2 Nanofibers and Their Enhanced Formaldehyde Sensing Properties[J]. J Alloys Compd, 2015,651:690-698. doi: 10.1016/j.jallcom.2015.08.174

    21. [21]

      Ju D, Xu H, Xu Q. High Triethylamine-Sensing Properties of NiO/SnO2 Hollow Sphere P-N Heterojunction Sensors[J]. Sens Actuators B, 2015,215:39-44. doi: 10.1016/j.snb.2015.03.015

    22. [22]

      Dong C J, Xu L, Hang B Q. Nonaqueous Synthesis of Ag-Functionalized In2O3/ZnO Nanocomposites for Highly Sensitive Formaldehyde Sensor[J]. Sens Actuators B, 2016,224:193-200. doi: 10.1016/j.snb.2015.09.107

    23. [23]

      Yamazoe N, Shimanoe K, Sawada C. Contribution of Electron Tunneling Transport in Semiconductor Gas Sensor[J]. Thin Solid Films, 2007,515:8302-8309. doi: 10.1016/j.tsf.2007.03.018

    24. [24]

      Zhu K M, Ma S Y, Pei S T. Preparation Characterization and Formaldehyde Gas Sensing Properties of Walnut-Shaped BiFeO3 Microspheres[J]. Mater Lett, 2019,246:107-110. doi: 10.1016/j.matlet.2019.02.129

    25. [25]

      Yu H M, Li J Z, Li Z Y. Enhanced Formaldehyde Sensing Performance Based on Ag@WO3 2D Nanocomposite[J]. Powder Technol, 2019,343:1-10. doi: 10.1016/j.powtec.2018.11.008

    26. [26]

      Upadhyay S B, Mishra R K, Sahay P P. Cr-Doped WO3 Nanosheets:Structural, Optical and Formaldehyde Sensing Properties[J]. Ceram Int, 2016,42(14):15301-15310. doi: 10.1016/j.ceramint.2016.06.170

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    3. [3]

      Liyong DUYi LIUGuoli YANG . Preparation and triethylamine sensing performance of ZnSnO3/NiO heterostructur. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 729-740. doi: 10.11862/CJIC.20240404

    4. [4]

      Lin LILe CHENLingjie HOUJiaqi JINGJiayu DINGTao ZHOURuiping ZHANG . Smartphone-assisted fluorescent silver nanoclusters as ratiometric sensor for visual colorimetric detection of sulfide. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2261-2271. doi: 10.11862/CJIC.20250130

    5. [5]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    6. [6]

      Wenjie Jiang Zhixiang Zhai Xiaoyan Zhuo Jia Wu Boyao Feng Tianqi Yu Huan Wen Shibin Yin . Revealing the reactant adsorption role of high-valence WO3 for boosting urea-assisted water splitting. Chinese Journal of Structural Chemistry, 2025, 44(3): 100519-100519. doi: 10.1016/j.cjsc.2025.100519

    7. [7]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    8. [8]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    9. [9]

      Ziyang LongQuanzheng LiChengliang ZhangHaifeng Shi . BiVO4/WO3-x S-scheme heterojunctions with amplified internal electric field for boosting photothermal-catalytic activity. Acta Physico-Chimica Sinica, 2025, 41(10): 100122-0. doi: 10.1016/j.actphy.2025.100122

    10. [10]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    11. [11]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    12. [12]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    13. [13]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    14. [14]

      Chengxin ChenHongfei ShiXiaoyan CaiLiang MaoZhe Chen . Enhanced bifunctional photocatalytic performances for H2 evolution and HCHO elimination with an S-scheme CoWO4/CdIn2S4 heterojunction. Acta Physico-Chimica Sinica, 2025, 41(12): 100155-0. doi: 10.1016/j.actphy.2025.100155

    15. [15]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    16. [16]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    17. [17]

      Xingyan LiuKaili WuYacen TangNing QiYumeng ZhangYouzhou HeMin FuYanhui Ao . Ti3C2 MXene-derived TiO2@C attached on Bi2WO6 with oxygen vacancies to fabricate S-scheme heterojunction for photocatalytic antibiotics degradation and NO removal. Chinese Chemical Letters, 2025, 36(11): 110882-. doi: 10.1016/j.cclet.2025.110882

    18. [18]

      Xiyuan Zhang Rui Dong Yang Yang Jiapeng Ding Zhiwei Miao . Palladium-Catalyzed Tandem Cyclization of 4-Vinylbenzoxazinone and Indene-2-carbaldehyde: A Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(9): 361-367. doi: 10.12461/PKU.DXHX202410062

    19. [19]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    20. [20]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

Metrics
  • PDF Downloads(4)
  • Abstract views(1003)
  • HTML views(187)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return