Citation: ZHANG Sijia, XU Caina, CHEN Jie, TIAN Huayu, CHEN Xuesi. Enhancing T Cell Antitumor Activity by Regulating Tumor Metabolism[J]. Chinese Journal of Applied Chemistry, ;2020, 37(9): 977-984. doi: 10.11944/j.issn.1000-0518.2020.09.200164 shu

Enhancing T Cell Antitumor Activity by Regulating Tumor Metabolism

  • Corresponding author: TIAN Huayu, thy@ciac.ac.cn
  • Received Date: 1 June 2020
    Revised Date: 24 June 2020
    Accepted Date: 17 July 2020

    Fund Project: Supported by the National Natural Science Foundation of China(No.51925305, No.51873208, No.51520105004, No.51833010) and the Jilin Province Science and Technology Development Program(No.20180414027GH)National Natural Science Foundation of China No.51520105004National Natural Science Foundation of China No.51833010National Natural Science Foundation of China No.51925305National Natural Science Foundation of China No.51873208Jilin Province Science and Technology Development Program No.20180414027GH

Figures(4)

  • Tumor immunotherapy is a new technique for cancer treatment. However, the low clinical response rate of tumor immunotherapy at this stage seriously restricts its further application. The fundamental reason is that the immunosuppressive microenvironment of tumor tissue limits the antitumor activity of T cells, and the metabolic changes of tumor tissue play a key role in the formation of tumor immunosuppressive microenvironment. In this paper, we focus on enhancing the antitumor activity of T cells by regulating the aerobic glycolysis, amino acid metabolism and fatty acid metabolism of tumors. Finally, the current problems in the research of tumor metabolism regulation are proposed, and the development prospects of nanocarriers in the field of tumor metabolism are prospected.
  • 加载中
    1. [1]

      Petersen P E. Oral Cancer Prevention and Control-the Approach of the World Health Organization[J]. Oral Oncol, 2009,45(4/5):454-460.  

    2. [2]

      Blagih J, Coulombe F, Vincent E E. The Energy Sensor AMPK Regulates T Cell Metabolic Adaptation and Effector Responses in Vivo[J]. Immunity, 2015,42(1):41-54. doi: 10.1016/j.immuni.2014.12.030

    3. [3]

      ZHANG Jidong, LI Jiayuan, JIN Huafeng. Research Progress on Small Molecule Anticancer Drug Release System Based on Fluorescence Effect[J]. Chinese J Appl Chem, 2019,36(7):733-748.  

    4. [4]

      WANG Yupeng, ZHOU Dongfang, CHENG Yanxiang. Hemoglobin/Photosensitizer Compound Drug System for Photodynamic Therapy[J]. Chinese J Appl Chem, 2018,35(12):1442-1448.  

    5. [5]

      Dougan M, Dougan S K. Targeting Immunotherapy to the Tumor Microenvironment[J]. J Cell Biochem, 2017,118:3049-3054. doi: 10.1002/jcb.26005

    6. [6]

      Palucka K, Banchereau J. Cancer Immunotherapy via Dendritic Cells[J]. Nat Rev Cancer, 2012,12(4):265-277. doi: 10.1038/nrc3258

    7. [7]

      McNutt M. Cancer Immunotherapy[J]. Science, 2013,342(6165)1417. doi: 10.1126/science.1249481

    8. [8]

      Schumacher T N, Schreiber R D. Neoantigens in Cancer Immunotherapy[J]. Science, 2015,348(6230):69-74. doi: 10.1126/science.aaa4971

    9. [9]

      Sharma P, Allison J P. The Future of Immune Checkpoint Therapy[J]. Science, 2015,348(6230):56-61. doi: 10.1126/science.aaa8172

    10. [10]

      Wu X, Giobbie-Hurder A, Liao X. Angiopoietin-2 as a Biomarker and Target for Immune Checkpoint Therapy[J]. Cancer Immunol Res, 2017,5(1):17-28.  

    11. [11]

      Yarchoan M, Hopkins A, Jaffee E M. Tumor Mutational Burden and Response Rate to PD-1 Inhibition[J]. New Engl J Med, 2017,377(25):2500-2501. doi: 10.1056/NEJMc1713444

    12. [12]

      Santarpia M, Karachaliou N. Tumor Immune Microenvironment Characterization and Response to Anti-PD-1 Therapy[J]. Cancer Biol Med, 2015,12(2):74-78.  

    13. [13]

      Netea-Maier R T, Smit J W A, Netea M G. Metabolic Changes in Tumor Cells and Tumor-Associated Macrophages:A Mutual Relationship[J]. Cancer Lett, 2018,413:102-109. doi: 10.1016/j.canlet.2017.10.037

    14. [14]

      Yu L, Chen X, Wang L. The Sweet Trap in Tumors:Aerobic Glycolysis and Potential Targets for Therapy[J]. Oncotarget, 2016,7(25):38908-38926. doi: 10.18632/oncotarget.7676

    15. [15]

      Warburg O, Wind F, Negelein E. The Metabolism of Tumors in the Body[J]. J Gen Physiol, 1927,8:519-530. doi: 10.1085/jgp.8.6.519

    16. [16]

      Gatenby R A, Gillies R J. Why do Cancers Have High Aerobic Glycolysis?[J]. Nat Rev Cancer, 2004,4(11):891-899. doi: 10.1038/nrc1478

    17. [17]

      Porporato P E, Payen V L, Baselet B. Metabolic Changes Associated with Tumor Metastasis, Part 2:Mitochondria, Lipid and Amino Acid Metabolism[J]. Cell Mol Life Sci, 2016,73(7):1349-1363. doi: 10.1007/s00018-015-2100-2

    18. [18]

      Currie E, Schulze A, Zechner R. Cellular Fatty Acid Metabolism and Cancer[J]. Cell Metab, 2013,18(2):153-161.  

    19. [19]

      Ho P C, Liu P S. Metabolic Communication in Tumors:A New Layer of Immunoregulation for Immune Evasion[J]. J Immunother Cancer, 2016,4(1)4.  

    20. [20]

      Lunt S Y, Vander Heiden M G. Aerobic Glycolysis:Meeting the Metabolic Requirements of Cell Proliferation[J]. Annu Rev Cell Dev Bi, 2011,27:441-464. doi: 10.1146/annurev-cellbio-092910-154237

    21. [21]

      Li Z, Zhang H. Reprogramming of Glucose, Fatty Acid and Amino Acid Metabolism for Cancer Progression[J]. Cell Mol Life Sci, 2016,73(2):377-392. doi: 10.1007/s00018-015-2070-4

    22. [22]

      Ho P C, Bihuniak J D, Macintyre A N. Phosphoenolpyruvate Is a Metabolic Checkpoint of Anti-tumor T Cell Responses[J]. Cell, 2015,162(6):1217-1228. doi: 10.1016/j.cell.2015.08.012

    23. [23]

      Yang B, Ding L, Chen Y. Augmenting Tumor-Starvation Therapy by Cancer Cell Autophagy Inhibition[J]. Adv Sci, 2020,7(6)1902847. doi: 10.1002/advs.201902847

    24. [24]

      Xie W, Deng W W, Zan M. Cancer Cell Membrane Camouflaged Nanoparticles to Realize Starvation Therapy Together with Checkpoint Blockades for Enhancing Cancer Therapy[J]. ACS Nano, 2019,13(3):2849-2857.  

    25. [25]

      Gao F, Cheng Q, Liu M D. Local T Regulatory Cells Depletion by an Integrated Nanodrug System for Efficient Chem-Immunotherapy of Tumor[J]. Sci China Chem, 2019,62(9):1230-1244. doi: 10.1007/s11426-019-9507-x

    26. [26]

      Jiang B. Aerobic Glycolysis and High Level of Lactate in Cancer Metabolism and Microenvironment[J]. Gene Dis, 2017,4(1):25-27. doi: 10.1016/j.gendis.2017.02.003

    27. [27]

      Gao F, Tang Y, Liu W L. Intra/Extracellular Lactic Acid Exhaustion for Synergistic Metabolic Therapy and Immunotherapy of Tumors[J]. Adv Mater, 2019,31(51)1904639. doi: 10.1002/adma.201904639

    28. [28]

      Sukumar M, Liu J, Ji Y. Inhibiting Glycolytic Metabolism Enhances CD8+ T Cell Memory and Antitumor Function[J]. J Clin Invest, 2013,123(10):4479-4488. doi: 10.1172/JCI69589

    29. [29]

      Labow B I, Souba W W. Glutamine[J]. World J Surg, 2000,24(12):1503-1513. doi: 10.1007/s002680010269

    30. [30]

      Shanware N P, Mullen A R, DeBerardinis R J. Glutamine:Pleiotropic Roles in Tumor Growth and Stress Resistance[J]. J Mol Med, 2011,89(3):229-236.  

    31. [31]

      Klysz D, Tai X G, Robert P A. Glutamine-Dependent Alpha-Ketoglutarate Production Regulates the Balance Between T Helper 1 Cell and Regulatory T Cell Generation[J]. Sci Signal, 2015,8(396)ra97. doi: 10.1126/scisignal.aab2610

    32. [32]

      Nabe S, Yamada T, Suzuki J. Reinforce the Antitumor Activity of CD8+ T Cells via Glutamine Restriction[J]. Cancer Sci, 2018,109(12):3737-3750. doi: 10.1111/cas.13827

    33. [33]

      Leone R D, Zhao L, Englert J M. Glutamine Blockade Induces Divergent Metabolic Programs to Overcome Tumor Immune Evasion[J]. Science, 2019,366(6468):1013-1021. doi: 10.1126/science.aav2588

    34. [34]

      Sukumar M, Liu J, Ji Y. Inhibiting Glycolytic Metabolism Enhances CD8+ T Cell Memory and Antitumor Function[J]. J Clin Invest, 2013,123(10):4479-4488. doi: 10.1172/JCI69589

    35. [35]

      Greten T F, Manns M P, Korangy F. Myeloid Derived Suppressor Cells in Human Diseases[J]. Int Immunopharmacol, 2011,11(7):802-807. doi: 10.1016/j.intimp.2011.01.003

    36. [36]

      Li X Y, Wenes M, Romero P. Navigating Metabolic Pathways to Enhance Antitumor Immunity and Immunotherapy[J]. Nat Rev Clin Oncol, 2019,16(7):425-441. doi: 10.1038/s41571-019-0203-7

    37. [37]

      Norian L A, Rodriguez P C, O'Mara L A. Tumor-Infiltrating Regulatory Dendritic Cells Inhibit CD8+ T Cell Function via L-Arginine Metabolism[J]. Cancer Res, 2009,69(7):3086-3094. doi: 10.1158/0008-5472.CAN-08-2826

    38. [38]

      Brin E, Wu K, Lu H T. PEGylated Arginine Deiminase can Modulate Tumor Immune Microenvironment by Affecting Immune Checkpoint Expression, Decreasing Regulatory T Cell Accumulation and Inducing Tumor T Cell Infiltration[J]. Oncotarget, 2017,8:58948-58963. doi: 10.18632/oncotarget.19564

    39. [39]

      Geiger R, Rieckmann J C, Wolf T. L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-Tumor Activity[J]. Cell, 2016,167:829-842. doi: 10.1016/j.cell.2016.09.031

    40. [40]

      Ron-Harel N, Santos D, Ghergurovich J M. Mitochondrial Biogenesis and Proteome Remodeling Promote One-Carbon Metabolism for T Cell Activation[J]. Cell Metab, 2016,24(1):104-117.  

    41. [41]

      Cheng C M, Geng F, Cheng X. Lipid Metabolism Reprogramming and Its Potential Targets in Cancer[J]. Cancer Commun, 2018,38(1)27.  

    42. [42]

      Monaco M E. Fatty Acid Metabolism in Breast Cancer Subtypes[J]. Oncotarget, 2017,8(17):29487-29500. doi: 10.18632/oncotarget.15494

    43. [43]

      Liu Y. Fatty Acid Oxidation is a Dominant Bioenergetic Pathway in Prostate Cancer[J]. Prostate Cancer P D, 2006,9(3):230-234.  

    44. [44]

      Clement E, Lazar I, Attan C. Adipocyte Extracellular Vesicles Carry Enzymes and Fatty Acids that Stimulate Mitochondrial Metabolism and Remodeling in Tumor Cells[J]. EMBO J, 2020,39(3)e102525.  

    45. [45]

      Pearce E L, Walsh M C, Cejas P J. Enhancing CD8 T-Cell Memory by Modulating Fatty Acid Metabolism[J]. Nature, 2009,460(7251):103-107. doi: 10.1038/nature08097

    46. [46]

      Pacella I, Procaccini C, Focaccetti C. Fatty Acid Metabolism Complements Glycolysis in the Selective Regulatory T Cell Expansion During Tumor Growth[J]. P Natl Acad Sci USA, 2018,115(28):E6546-E6555. doi: 10.1073/pnas.1720113115

    47. [47]

      Zhang Y, Kurupati R, Liu L. Enhancing CD8+ T Cell Fatty Acid Catabolism within a Metabolically Challenging Tumor Microenvironment Increases the Efficacy of Melanoma Immunotherapy[J]. Cancer Cell, 2017,32:377-391. doi: 10.1016/j.ccell.2017.08.004

    48. [48]

      Zhang C, Yue C, Herrmann A. STAT3 Activation-Induced Fatty Acid Oxidation in CD8+ T Effector Cells is Critical for Obesity-Promoted Breast Tumor Growth[J]. Cell Metab, 2020,31(1):148-161.  

    49. [49]

      Xia J L, Tian H Y, Chen J. Polyglutamic Acid Based Polyanionic Shielding System for Polycationic Gene Carriers[J]. Chinese J Polym Sci, 2016,34(3):316-323.  

    50. [50]

      LIN Lin, GUO Zhaopei, CHEN Jie. Synthesis and Characterization of Polyphenylalanine Grafted Low Molecular Weight PEI as Efficient Gene Carriers[J]. Acta Polym Sin, 2017,2(2):321-328.  

    51. [51]

      Xu C N, Tian H Y, Wang Y B. Anti-tumor Effects of Combined Doxorubicin and siRNA for Pulmonary Delivery[J]. Chinese Chem Lett, 2017,28(4):807-812. doi: 10.1016/j.cclet.2016.12.013

    52. [52]

      Zhao H, Xu J, Li Y. Nanoscale Coordination Polymer Based Nanovaccine for Tumor Immunotherapy[J]. ACS Nano, 2019,13(11):13127-13135. doi: 10.1021/acsnano.9b05974

  • 加载中
    1. [1]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    2. [2]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    3. [3]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    4. [4]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    5. [5]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    6. [6]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    7. [7]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    8. [8]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    9. [9]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    10. [10]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    11. [11]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    12. [12]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    13. [13]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    14. [14]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    15. [15]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    16. [16]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    17. [17]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    18. [18]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    19. [19]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    20. [20]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

Metrics
  • PDF Downloads(26)
  • Abstract views(1793)
  • HTML views(473)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return