Enhancing T Cell Antitumor Activity by Regulating Tumor Metabolism
- Corresponding author: TIAN Huayu, thy@ciac.ac.cn
Citation:
ZHANG Sijia, XU Caina, CHEN Jie, TIAN Huayu, CHEN Xuesi. Enhancing T Cell Antitumor Activity by Regulating Tumor Metabolism[J]. Chinese Journal of Applied Chemistry,
;2020, 37(9): 977-984.
doi:
10.11944/j.issn.1000-0518.2020.09.200164
Petersen P E. Oral Cancer Prevention and Control-the Approach of the World Health Organization[J]. Oral Oncol, 2009,45(4/5):454-460.
Blagih J, Coulombe F, Vincent E E. The Energy Sensor AMPK Regulates T Cell Metabolic Adaptation and Effector Responses in Vivo[J]. Immunity, 2015,42(1):41-54. doi: 10.1016/j.immuni.2014.12.030
ZHANG Jidong, LI Jiayuan, JIN Huafeng. Research Progress on Small Molecule Anticancer Drug Release System Based on Fluorescence Effect[J]. Chinese J Appl Chem, 2019,36(7):733-748.
WANG Yupeng, ZHOU Dongfang, CHENG Yanxiang. Hemoglobin/Photosensitizer Compound Drug System for Photodynamic Therapy[J]. Chinese J Appl Chem, 2018,35(12):1442-1448.
Dougan M, Dougan S K. Targeting Immunotherapy to the Tumor Microenvironment[J]. J Cell Biochem, 2017,118:3049-3054. doi: 10.1002/jcb.26005
Palucka K, Banchereau J. Cancer Immunotherapy via Dendritic Cells[J]. Nat Rev Cancer, 2012,12(4):265-277. doi: 10.1038/nrc3258
McNutt M. Cancer Immunotherapy[J]. Science, 2013,342(6165)1417. doi: 10.1126/science.1249481
Schumacher T N, Schreiber R D. Neoantigens in Cancer Immunotherapy[J]. Science, 2015,348(6230):69-74. doi: 10.1126/science.aaa4971
Sharma P, Allison J P. The Future of Immune Checkpoint Therapy[J]. Science, 2015,348(6230):56-61. doi: 10.1126/science.aaa8172
Wu X, Giobbie-Hurder A, Liao X. Angiopoietin-2 as a Biomarker and Target for Immune Checkpoint Therapy[J]. Cancer Immunol Res, 2017,5(1):17-28.
Yarchoan M, Hopkins A, Jaffee E M. Tumor Mutational Burden and Response Rate to PD-1 Inhibition[J]. New Engl J Med, 2017,377(25):2500-2501. doi: 10.1056/NEJMc1713444
Santarpia M, Karachaliou N. Tumor Immune Microenvironment Characterization and Response to Anti-PD-1 Therapy[J]. Cancer Biol Med, 2015,12(2):74-78.
Netea-Maier R T, Smit J W A, Netea M G. Metabolic Changes in Tumor Cells and Tumor-Associated Macrophages:A Mutual Relationship[J]. Cancer Lett, 2018,413:102-109. doi: 10.1016/j.canlet.2017.10.037
Yu L, Chen X, Wang L. The Sweet Trap in Tumors:Aerobic Glycolysis and Potential Targets for Therapy[J]. Oncotarget, 2016,7(25):38908-38926. doi: 10.18632/oncotarget.7676
Warburg O, Wind F, Negelein E. The Metabolism of Tumors in the Body[J]. J Gen Physiol, 1927,8:519-530. doi: 10.1085/jgp.8.6.519
Gatenby R A, Gillies R J. Why do Cancers Have High Aerobic Glycolysis?[J]. Nat Rev Cancer, 2004,4(11):891-899. doi: 10.1038/nrc1478
Porporato P E, Payen V L, Baselet B. Metabolic Changes Associated with Tumor Metastasis, Part 2:Mitochondria, Lipid and Amino Acid Metabolism[J]. Cell Mol Life Sci, 2016,73(7):1349-1363. doi: 10.1007/s00018-015-2100-2
Currie E, Schulze A, Zechner R. Cellular Fatty Acid Metabolism and Cancer[J]. Cell Metab, 2013,18(2):153-161.
Ho P C, Liu P S. Metabolic Communication in Tumors:A New Layer of Immunoregulation for Immune Evasion[J]. J Immunother Cancer, 2016,4(1)4.
Lunt S Y, Vander Heiden M G. Aerobic Glycolysis:Meeting the Metabolic Requirements of Cell Proliferation[J]. Annu Rev Cell Dev Bi, 2011,27:441-464. doi: 10.1146/annurev-cellbio-092910-154237
Li Z, Zhang H. Reprogramming of Glucose, Fatty Acid and Amino Acid Metabolism for Cancer Progression[J]. Cell Mol Life Sci, 2016,73(2):377-392. doi: 10.1007/s00018-015-2070-4
Ho P C, Bihuniak J D, Macintyre A N. Phosphoenolpyruvate Is a Metabolic Checkpoint of Anti-tumor T Cell Responses[J]. Cell, 2015,162(6):1217-1228. doi: 10.1016/j.cell.2015.08.012
Yang B, Ding L, Chen Y. Augmenting Tumor-Starvation Therapy by Cancer Cell Autophagy Inhibition[J]. Adv Sci, 2020,7(6)1902847. doi: 10.1002/advs.201902847
Xie W, Deng W W, Zan M. Cancer Cell Membrane Camouflaged Nanoparticles to Realize Starvation Therapy Together with Checkpoint Blockades for Enhancing Cancer Therapy[J]. ACS Nano, 2019,13(3):2849-2857.
Gao F, Cheng Q, Liu M D. Local T Regulatory Cells Depletion by an Integrated Nanodrug System for Efficient Chem-Immunotherapy of Tumor[J]. Sci China Chem, 2019,62(9):1230-1244. doi: 10.1007/s11426-019-9507-x
Jiang B. Aerobic Glycolysis and High Level of Lactate in Cancer Metabolism and Microenvironment[J]. Gene Dis, 2017,4(1):25-27. doi: 10.1016/j.gendis.2017.02.003
Gao F, Tang Y, Liu W L. Intra/Extracellular Lactic Acid Exhaustion for Synergistic Metabolic Therapy and Immunotherapy of Tumors[J]. Adv Mater, 2019,31(51)1904639. doi: 10.1002/adma.201904639
Sukumar M, Liu J, Ji Y. Inhibiting Glycolytic Metabolism Enhances CD8+ T Cell Memory and Antitumor Function[J]. J Clin Invest, 2013,123(10):4479-4488. doi: 10.1172/JCI69589
Labow B I, Souba W W. Glutamine[J]. World J Surg, 2000,24(12):1503-1513. doi: 10.1007/s002680010269
Shanware N P, Mullen A R, DeBerardinis R J. Glutamine:Pleiotropic Roles in Tumor Growth and Stress Resistance[J]. J Mol Med, 2011,89(3):229-236.
Klysz D, Tai X G, Robert P A. Glutamine-Dependent Alpha-Ketoglutarate Production Regulates the Balance Between T Helper 1 Cell and Regulatory T Cell Generation[J]. Sci Signal, 2015,8(396)ra97. doi: 10.1126/scisignal.aab2610
Nabe S, Yamada T, Suzuki J. Reinforce the Antitumor Activity of CD8+ T Cells via Glutamine Restriction[J]. Cancer Sci, 2018,109(12):3737-3750. doi: 10.1111/cas.13827
Leone R D, Zhao L, Englert J M. Glutamine Blockade Induces Divergent Metabolic Programs to Overcome Tumor Immune Evasion[J]. Science, 2019,366(6468):1013-1021. doi: 10.1126/science.aav2588
Sukumar M, Liu J, Ji Y. Inhibiting Glycolytic Metabolism Enhances CD8+ T Cell Memory and Antitumor Function[J]. J Clin Invest, 2013,123(10):4479-4488. doi: 10.1172/JCI69589
Greten T F, Manns M P, Korangy F. Myeloid Derived Suppressor Cells in Human Diseases[J]. Int Immunopharmacol, 2011,11(7):802-807. doi: 10.1016/j.intimp.2011.01.003
Li X Y, Wenes M, Romero P. Navigating Metabolic Pathways to Enhance Antitumor Immunity and Immunotherapy[J]. Nat Rev Clin Oncol, 2019,16(7):425-441. doi: 10.1038/s41571-019-0203-7
Norian L A, Rodriguez P C, O'Mara L A. Tumor-Infiltrating Regulatory Dendritic Cells Inhibit CD8+ T Cell Function via L-Arginine Metabolism[J]. Cancer Res, 2009,69(7):3086-3094. doi: 10.1158/0008-5472.CAN-08-2826
Brin E, Wu K, Lu H T. PEGylated Arginine Deiminase can Modulate Tumor Immune Microenvironment by Affecting Immune Checkpoint Expression, Decreasing Regulatory T Cell Accumulation and Inducing Tumor T Cell Infiltration[J]. Oncotarget, 2017,8:58948-58963. doi: 10.18632/oncotarget.19564
Geiger R, Rieckmann J C, Wolf T. L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-Tumor Activity[J]. Cell, 2016,167:829-842. doi: 10.1016/j.cell.2016.09.031
Ron-Harel N, Santos D, Ghergurovich J M. Mitochondrial Biogenesis and Proteome Remodeling Promote One-Carbon Metabolism for T Cell Activation[J]. Cell Metab, 2016,24(1):104-117.
Cheng C M, Geng F, Cheng X. Lipid Metabolism Reprogramming and Its Potential Targets in Cancer[J]. Cancer Commun, 2018,38(1)27.
Monaco M E. Fatty Acid Metabolism in Breast Cancer Subtypes[J]. Oncotarget, 2017,8(17):29487-29500. doi: 10.18632/oncotarget.15494
Liu Y. Fatty Acid Oxidation is a Dominant Bioenergetic Pathway in Prostate Cancer[J]. Prostate Cancer P D, 2006,9(3):230-234.
Clement E, Lazar I, Attan C. Adipocyte Extracellular Vesicles Carry Enzymes and Fatty Acids that Stimulate Mitochondrial Metabolism and Remodeling in Tumor Cells[J]. EMBO J, 2020,39(3)e102525.
Pearce E L, Walsh M C, Cejas P J. Enhancing CD8 T-Cell Memory by Modulating Fatty Acid Metabolism[J]. Nature, 2009,460(7251):103-107. doi: 10.1038/nature08097
Pacella I, Procaccini C, Focaccetti C. Fatty Acid Metabolism Complements Glycolysis in the Selective Regulatory T Cell Expansion During Tumor Growth[J]. P Natl Acad Sci USA, 2018,115(28):E6546-E6555. doi: 10.1073/pnas.1720113115
Zhang Y, Kurupati R, Liu L. Enhancing CD8+ T Cell Fatty Acid Catabolism within a Metabolically Challenging Tumor Microenvironment Increases the Efficacy of Melanoma Immunotherapy[J]. Cancer Cell, 2017,32:377-391. doi: 10.1016/j.ccell.2017.08.004
Zhang C, Yue C, Herrmann A. STAT3 Activation-Induced Fatty Acid Oxidation in CD8+ T Effector Cells is Critical for Obesity-Promoted Breast Tumor Growth[J]. Cell Metab, 2020,31(1):148-161.
Xia J L, Tian H Y, Chen J. Polyglutamic Acid Based Polyanionic Shielding System for Polycationic Gene Carriers[J]. Chinese J Polym Sci, 2016,34(3):316-323.
LIN Lin, GUO Zhaopei, CHEN Jie. Synthesis and Characterization of Polyphenylalanine Grafted Low Molecular Weight PEI as Efficient Gene Carriers[J]. Acta Polym Sin, 2017,2(2):321-328.
Xu C N, Tian H Y, Wang Y B. Anti-tumor Effects of Combined Doxorubicin and siRNA for Pulmonary Delivery[J]. Chinese Chem Lett, 2017,28(4):807-812. doi: 10.1016/j.cclet.2016.12.013
Zhao H, Xu J, Li Y. Nanoscale Coordination Polymer Based Nanovaccine for Tumor Immunotherapy[J]. ACS Nano, 2019,13(11):13127-13135. doi: 10.1021/acsnano.9b05974
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
Hong CAI , Jiewen WU , Jingyun LI , Lixian CHEN , Siqi XIAO , Dan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382
Ruiying WANG , Hui WANG , Fenglan CHAI , Zhinan ZUO , Benlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
Jian Li , Yu Zhang , Rongrong Yan , Kaiyuan Sun , Xiaoqing Liu , Zishang Liang , Yinan Jiao , Hui Bu , Xin Chen , Jinjin Zhao , Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042
Aiai WANG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225
Tingting XU , Wenjing ZHANG , Yongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229
Jiahui CHEN , Tingting ZHENG , Xiuyun ZHANG , Wei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
Yukun Chang , Haoqin Huang , Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095
Qingying Gao , Tao Luo , Jianyuan Su , Chaofan Yu , Jiazhu Li , Bingfei Yan , Wenzuo Li , Zhen Zhang , Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074
Yuan Zheng , Quan Lan , Zhenggen Zha , Lingling Li , Jun Jiang , Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065
Meijin Li , Xirong Fu , Xue Zheng , Yuhan Liu , Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027
Keying Qu , Jie Li , Ziqiu Lai , Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032
Zijian Zhao , Yanxin Shi , Shicheng Li , Wenhong Ruan , Fang Zhu , Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
Linjie ZHU , Xufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189