Citation: HU Guowen, QIAO Yuling. Folic Acid-Carbon Dot Conjugates for Cancer Cell Targeting[J]. Chinese Journal of Applied Chemistry, ;2020, 37(9): 1003-1009. doi: 10.11944/j.issn.1000-0518.2020.09.200100 shu

Folic Acid-Carbon Dot Conjugates for Cancer Cell Targeting

  • Corresponding author: HU Guowen, hugw@lzu.edu.cn
  • Received Date: 8 April 2020
    Revised Date: 9 June 2020
    Accepted Date: 1 July 2020

Figures(8)

  • Fluorescent nanobioprobes with cell-targeting specificity are promising to find important applications in bioanalysis, biomedicine, and clinical diagnosis. In this work, folic acid-carbon dot conjugates (FA-CDs) were prepared via hydrothermal method and 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (EDC) chemistry. The as-prepared FA-CDs with low toxicity and high luminescence can specifically target cancer cells. The specificity of this receptor-mediated internalization was confirmed by comparing the uptake by Hela and NIH-3T3 cells. This work is of great significance for the early diagnosis of cancer cells.
  • 加载中
    1. [1]

      Eck W, Nicholson A I, Zentgraf H. Anti-CD4-targeted Gold Nanoparticles Induce Specific Contrast Enhancement of Peripheral Lymph Nodes in X-ray Computed Tomography of Live Mice[J]. Nano Lett, 2010,10(7):2318-2322. doi: 10.1021/nl101019s

    2. [2]

      Liu D, Wu W, Ling J. Effective PEGylation of Iron Oxide Nanoparticles for High Performance in Vivo Cancer Imaging[J]. Adv Funct Mater, 2011,21(8):1498-1504. doi: 10.1002/adfm.201001658

    3. [3]

      Michalet X, Pinaud F F, Bentolila L A. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics[J]. Science, 2005,307(5709):538-544. doi: 10.1126/science.1104274

    4. [4]

      Gao X, Cui Y, Levenson R M. In Vivo Cancer Targeting and Imaging with Semiconductor Quantum Dots[J]. Nat Biotechnol, 2004,22(8):969-976. doi: 10.1038/nbt994

    5. [5]

      Medintz I L, Uyeda H T, Goldman E R. Quantum Dot Bioconjugates for Imaging, Labelling and Sensing[J]. Nat Mater, 2005,4(6):435-446. doi: 10.1038/nmat1390

    6. [6]

      Pellegrino T, Kudera S, Liedl T. On the Development of Colloidal Nanoparticles Towards Multifunctional Structures and Their Possible Use for Biological Applications[J]. Small, 2005,1(1):48-63.  

    7. [7]

      Gill R, Zayats M, Willner I. Semiconductor Quantum Dots for Bioanalysis[J]. Angew Chem Int Ed, 2008,47(40):7602-7625. doi: 10.1002/anie.200800169

    8. [8]

      Chen W. Nanoparticle Fluorescence Based Technology for Biological Applications[J]. J Nanosci Nanotechnol, 2008,8(3):1019-1051. doi: 10.1166/jnn.2008.301

    9. [9]

      José, Costa-Fernández. The Use of luminescent Quantum Dots for Optical Sensing[J]. TrAC, Trends Anal Chem, 2006,25(3):207-218. doi: 10.1016/j.trac.2005.07.008

    10. [10]

      Baker S N, Baker G A. Luminescent Carbon Nanodots:Emergent Nanolights[J]. Angew Chem Int Ed, 2010,49(38):6726-6744. doi: 10.1002/anie.200906623

    11. [11]

      Zhu S, Meng Q, Wang L. Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging[J]. Angew Chem, 2013,125(14):4045-4049. doi: 10.1002/ange.201300519

    12. [12]

      Shen J, Zhu Y, Yang X. Graphene Quantum Dots:Emergent Nanolights for Bioimaging, Sensors, Catalysis and Photovoltaic Devices[J]. Chem Commun, 2012,48(31):3686-3699. doi: 10.1039/c2cc00110a

    13. [13]

      Ray S C, Saha A, Jana N R. Fluorescent Carbon Nanoparticles:Synthesis, Characterization, and Bioimaging Application[J]. J Phys Chem C, 2009,113(43):18546-18551. doi: 10.1021/jp905912n

    14. [14]

      Li H, He X, Liu Y. One-Step Ultrasonic Synthesis of Water-Soluble Carbon Nanoparticles with Excellent Photoluminescent Properties[J]. Carbon, 2011,49(2):605-609. doi: 10.1016/j.carbon.2010.10.004

    15. [15]

      Lu Y, Low P S. Folate-Mediated Delivery of Macromolecular Anticancer Therapeutic Agents[J]. Adv Drug Delivery Rev, 2012,54(5):675-693.  

    16. [16]

      Kamen B A, Capdevila A. Receptor-mediated Folate Accumulation is Regulated by the Cellular Folate Content[J]. Proc Nat Acad Sci USA, 1986,83(16):5983-5987. doi: 10.1073/pnas.83.16.5983

    17. [17]

      Leamon C P, Low P S. Delivery of Macromolecules into Living Cells:A Method that Exploits Folate Receptor Endocytosis[J]. Proc Nat Acad Sci USA, 1991,88(13):5572-5576. doi: 10.1073/pnas.88.13.5572

    18. [18]

      Sudimack J, Lee R J. Targeted Drug Delivery via the Folate Receptor[J]. Adv Drug Delivery Rev, 2000,41(2):147-162.

    19. [19]

      Lu Y J, Low P S. Folate-mediated Delivery of Macromolecular Anticancer Therapeutic Agents[J]. Adv Drug Delivery Rev, 2002,54(5):675-693. doi: 10.1016/S0169-409X(02)00042-X

    20. [20]

      Weitman S D, Lark R H, Coney L R. Distribution of the Folate Receptor GP38 in Normal and Malignant Cell Lines and Tissues[J]. Cancer Res, 1992,52(12):3396-3401.  

    21. [21]

      Suriamoorthy P, Zhang X, Hao G. Folic Acid-CdTe Quantum Dot Conjugates and Their Applications for Cancer Cell Targeting[J]. Cancer Nanotechnol, 2010,1(1):19-28.  

    22. [22]

      Liu R, Wu D, Liu S. An Aqueous Route to Multicolor Photoluminescent Carbon Dots Using Silica Spheres as Carriers[J]. Angew Chem, 2009,48(25):4598-4601. doi: 10.1002/anie.200900652

    23. [23]

      Krysmann M J, Kelarakis A, Dallas P. Formation Mechanism of Carbogenic Nanoparticles with Dual Photoluminescence Emission[J]. J Am Chem Soc, 2012,134(2):747-750. doi: 10.1021/ja204661r

    24. [24]

      Liu H, Ye T, Mao C. Fluorescent Carbon Nanoparticles Derived from Candle Soot[J]. Angew Chem, 2007,46(34):6473-6475. doi: 10.1002/anie.200701271

    25. [25]

      Bharali D J, Lucey D W, Jayakumar H. Folate-Receptor-Mediated Delivery of InP Quantum Dots for Bioimaging Using Confocal and Two-Photon Microscopy[J]. J Am Chem Soc, 2005,127(32):11364-11371. doi: 10.1021/ja051455x

    26. [26]

      Fowley C, Mccaughan B, Devlin A. Highly Luminescent Biocompatible Carbon Quantum Dots by Encapsulation with an Amphiphilic Polymer[J]. Chem Commun, 2012,48(75):9361-9363. doi: 10.1039/c2cc34962k

    27. [27]

      LUO Xin, PENG Xia, CHEN Guangcheng. Using Folic Acid-Modified Polyethylenimine-SPIO Nanoparticles for PD-L1 siRNA Delivery to Target Gastric Cancer[J]. Chinese J Pathophysiol, 2017,33(12):2179-2187.  

  • 加载中
    1. [1]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    2. [2]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    3. [3]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    4. [4]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    5. [5]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    6. [6]

      Chengcheng Si Linshan Chai Huiyuan Liu Liye Sun Shijian Cheng Hailing Li Wenyun Wang Fang Liu Qing Feng Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069

    7. [7]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    8. [8]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    9. [9]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    10. [10]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    11. [11]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    12. [12]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    13. [13]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    14. [14]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    15. [15]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    16. [16]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    17. [17]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    20. [20]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

Metrics
  • PDF Downloads(5)
  • Abstract views(1023)
  • HTML views(250)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return