Citation: BI Yipiao, GONG Xue, YANG Fa, RUAN Mingbo, SONG Ping, XU Weilin. Polyvalent MnOx/C Electrocatalyst for HighlyEfficient Nitrogen Reduction Reaction[J]. Chinese Journal of Applied Chemistry, ;2020, 37(9): 1048-1055. doi: 10.11944/j.issn.1000-0518.2020.09.200085 shu

Polyvalent MnOx/C Electrocatalyst for HighlyEfficient Nitrogen Reduction Reaction

  • Corresponding author: XU Weilin, weilinxu@ciac.ac.cn
  • Received Date: 22 March 2020
    Revised Date: 15 April 2020
    Accepted Date: 7 May 2020

    Fund Project: Guangdong Joint Fund U1601211National Natural Science Foundation of China 21433003National Natural Science Foundation of China 2017YF9127900National Natural Science Foundation of China 21721003National Natural Science Foundation of China 2018YFB1502302Supported by the National Science Foundation for Distinguished Young Scholars of China(No.21925205), the Guangdong Joint Fund(No.U1601211), and the National Natural Science Foundation of China(No.21733004, No.21633008, No.2017YFE9127900, No.21721003, No.2018YFB1502302, No.21433003)National Natural Science Foundation of China 21633008National Science Foundation for Distinguished Young Scholars of China 21925205National Natural Science Foundation of China 21733004

Figures(4)

  • NH3 plays an important role in human production and life, but the main way to produce NH3 is still the high energy consumption and high pollution Haber-Bosch process. Electrocatalytic N2 reduction reaction (ENRR) is considered to be an effective alternative method, however highly efficient catalyst is still a challenging as a result of high bond energy of N≡N. Here, we report an electrocatalyst of polyvalent MnOx/C which is designed via simple redox reaction for highly efficient production of ammonia (with yield up to 7.8 μgNH3/(h·mgcat) and Faradic efficiency (FE) up to 9.2%) from nitrogen reduction reaction (NRR). The high NRR performance of polyvalent MnOx/C mainly originates from a synergistic effect among different valence states (Mn2+, Mn3+, Mn4+) of Mn for NRR.
  • 加载中
    1. [1]

      Mukherjee S, Cullen D A, Karakalos S. Metal-Organic Framework-Derived Nitrogen-Doped Highly Disordered Carbon for Electrochemical Ammonia Synthesis Using N2 and H2O in Alkaline Electrolytes[J]. Nano Energy, 2018,48:217-226. doi: 10.1016/j.nanoen.2018.03.059

    2. [2]

      Lv C, Yan C, Chen G. An Amorphous Noble-Metal-Free Electrocatalyst that Enables Nitrogen Fixation under Ambient Conditions[J]. Angew Chem Int Ed, 2018,57:6073-6076. doi: 10.1002/anie.201801538

    3. [3]

      Shipman M A, Symes M D. Recent Progress Towards the Electrosynthesis of Ammonia from Sustainable Resources[J]. Catal Today, 2017,286:57-68. doi: 10.1016/j.cattod.2016.05.008

    4. [4]

      Li S J, Bao D, Shi M M. Amorphizing of Au Nanoparticles by CeOx-RGO Hybrid Support Towards Highly Efficient Electrocatalyst for N2 Reduction under Ambient Conditions[J]. Adv Mater, 2017,291700001. doi: 10.1002/adma.201700001

    5. [5]

      Hao Y, Dong X, Zhai S. Hydrogenated Bismuth Molybdate Nanoframe for Efficient Sunlight-Driven Nitrogen Fixation from Air[J]. Chem-Eur J, 2016,22:18722-18728. doi: 10.1002/chem.201604510

    6. [6]

      Burgess B K, Wherland S, Newton W E. Nitrogenase Reactivity:Insight into the Nitrogen-Fixing Process Through Hydrogen-Inhibition and HD-Forming Reactions[J]. Biochemistry, 1981,20:5140-5146. doi: 10.1021/bi00521a007

    7. [7]

      Wang L, Xia M, Wang H. Greening Ammonia toward the Solar Ammonia Refinery[J]. Joule, 2018,2:1055-1074. doi: 10.1016/j.joule.2018.04.017

    8. [8]

      Zhu D, Zhang L, Ruther R E. Photo-illuminated Diamond as a Solid-state Source of Solvated Electrons in Water for Nitrogen Reduction[J]. Nat Mater, 2013,12:836-841. doi: 10.1038/nmat3696

    9. [9]

      Li X, Wang W, Jiang D. Efficient Solar-Driven Nitrogen Fixation over Carbon-Tungstic-Acid Hybrids[J]. Chem-Eur J, 2016,22:13819-13822. doi: 10.1002/chem.201603277

    10. [10]

      Guo C, Ran J, Vasileff A. Rational Design of Electrocatalysts and Photo(electro)catalysts for Nitrogen Reduction to Ammonia (NH3) under Ambient Conditions[J]. Energy Environ Sci, 2018,11:45-56. doi: 10.1039/C7EE02220D

    11. [11]

      Yandulov D V, Schrock R R. Catalytic Reduction of Dinitrogen to Ammonia at a Single Molybdenum Center[J]. Science, 2003,301:76-78. doi: 10.1126/science.1085326

    12. [12]

      Murakami T, Nishikiori T, Nohira T. Electrolytic Synthesis of Ammonia in Molten Salts under Atmospheric Pressure[J]. J Am Chem Soc, 2003,125:334-335. doi: 10.1021/ja028891t

    13. [13]

      Zhang R, Ren X, Shi X. Enabling Effective Electrocatalytic N2 Conversion to NH3 by the TiO2 Nanosheets Array under Ambient Conditions[J]. ACS Appl Mater Interfaces, 2018,10:28251-28255. doi: 10.1021/acsami.8b06647

    14. [14]

      Kyriakou V, Garagounis I, Vasileiou E. Progress in the Electrochemical Synthesis of Ammonia[J]. Catal Today, 2017,286:2-13. doi: 10.1016/j.cattod.2016.06.014

    15. [15]

      Singh A R, Rohr B A, Schwalbe J A. Electrochemical Ammonia Synthesis-The Selectivity Challenge[J]. ACS Catal, 2017,7:706-709. doi: 10.1021/acscatal.6b03035

    16. [16]

      Lu Y, Yang Y, Zhang T. Photoprompted Hot Electrons from Bulk Cross-Linked Graphene Materials and Their Efficient Catalysis for Atmospheric Ammonia Synthesis[J]. ACS Nano, 2016,10:10507-10515. doi: 10.1021/acsnano.6b06472

    17. [17]

      Wang X, Wang W, Qiao M. Atomically Dispersed Au1 Catalyst towards Efficient Electrochemical Synthesis of Ammonia[J]. Sci Bull, 2018,63:1246-1253. doi: 10.1016/j.scib.2018.07.005

    18. [18]

      Wang J, Yu L, Hu L. Ambient Ammonia Synthesis via Palladium-Catalyzed Electrohydrogenation of Dinitrogen at Low Overpotential[J]. Nat Commun, 2018,9:1-7. doi: 10.1038/s41467-017-02088-w

    19. [19]

      Lin B, Liu Y, Heng L. Morphology Effect of Ceria on the Catalytic Performances of Ru/CeO2 Catalysts for Ammonia Synthesis[J]. Ind Eng Chem Res, 2018,57:9127-9135. doi: 10.1021/acs.iecr.8b02126

    20. [20]

      Wang D, Azofra L M, Harb M. Energy-Efficient Nitrogen Reduction to Ammonia at Low Overpotential in Aqueous Electrolyte under Ambient Conditions[J]. ChemSusChem, 2018,11:3416-3422. doi: 10.1002/cssc.201801632

    21. [21]

      Tao H, Choi C, Ding L. Nitrogen Fixation by Ru Single-Atom Electrocatalytic Reduction[J]. Chemistry, 2019,5:204-214. doi: 10.1016/j.chempr.2018.10.007

    22. [22]

      Liu H M, Han S H, Zhao Y. Surfactant-Free Atomically Ultrathin Rhodium Nanosheet Nanoassemblies for Efficient Nitrogen Electroreduction[J]. J Mater Chem A, 2018,6:3211-3217. doi: 10.1039/C7TA10866D

    23. [23]

      Wang Y, Jia K, Pan Q. Boron-Doped TiO2 for Efficient Electrocatalytic N2 Fixation to NH3 at Ambient Conditions[J]. ACS Sus Chem Eng, 2019,7:117-122. doi: 10.1021/acssuschemeng.8b05332

    24. [24]

      Chen S, Perathoner S, Ampelli C. Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-Nanotube-Based Electrocatalyst[J]. Angew Chem, 2017,56:2699-2703. doi: 10.1002/anie.201609533

    25. [25]

      Wang M, Liu S, Qian T. Over 56.55% Faradaic Efficiency of Ambient Ammonia Synthesis Enabled by Positively Shifting the Reaction Potentia[J]. Nat Commun, 2019,10:1-8. doi: 10.1038/s41467-018-07882-8

    26. [26]

      Cheng H, Ding L X, Chen G F. Molybdenum Carbide Nanodots Enable Efficient Electrocatalytic Nitrogen Fixation under Ambient Conditions[J]. Adv Mater, 2018,301803694. doi: 10.1002/adma.201803694

    27. [27]

      Ren X, Cui G, Chen L. Electrochemical N2 Fixation to NH3 under Ambient Conditions:Mo2N Nanorod as a Highly Efficient and Selective Catalyst[J]. Chem Commun, 2018,54:8474-8477. doi: 10.1039/C8CC03627F

    28. [28]

      Zhang L, Ji X, Ren X. Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS2 Catalyst:Theoretical and Experimental Studies[J]. Adv Mater, 2018,301800191. doi: 10.1002/adma.201800191

    29. [29]

      Yao Y, Yao Y, Feng Q. Chromium Oxynitride Electrocatalysts for Electrochemical Synthesis of Ammonia under Ambient Conditions[J]. Small Methods, 2019,31800324. doi: 10.1002/smtd.201800324

    30. [30]

      Liu Y, Su Y, Quan X. Facile Ammonia Synthesis from Electrocatalytic N2 Reduction under Ambient Conditions on N-Doped Porous Carbon[J]. ACS Catal, 2018,8:1186-1191. doi: 10.1021/acscatal.7b02165

    31. [31]

      Song P, Wang H, Kang L. Electrochemical Nitrogen Reduction to Ammonia at Ambient Conditions on Nitrogen and Phosphorus Co-Doped Porous Carbon[J]. Chem Commun, 2019,55:687-690. doi: 10.1039/C8CC09256G

    32. [32]

      Song Y, Johnson D, Peng R. A Physical Catalyst for the Electrolysis of Nitrogen to Ammonia[J]. Sci Adv, 2018,4e1700336. doi: 10.1126/sciadv.1700336

    33. [33]

      Jin H, Guo C, Liu X. Emerging Two-Dimensional Nanomaterials for Electrocatalysis[J]. Chem Rev, 2018,118:6337-6408. doi: 10.1021/acs.chemrev.7b00689

    34. [34]

      Huang L, Wu J, Han P. NbO2 Electrocatalyst Toward 32% Faradaic Efficiency for N2 Fixation[J]. Small Methods, 2019,31800386. doi: 10.1002/smtd.201800386

    35. [35]

      Liu Q, Zhang X, Zhang B. Ambient N2 Fixation to NH3 Electrocatalyzed by a Spinel Fe3O4 Nanorod[J]. Nanoscale, 2018,10:14386-14389. doi: 10.1039/C8NR04524K

    36. [36]

      Han J, Ji X, Ren X. MoO3 Nanosheets for Efficient Electrocatalytic N2 Fixation to NH3[J]. J Mater Chem A, 2018,6:12974-12977. doi: 10.1039/C8TA03974G

    37. [37]

      Wu X, Xia L, Wang Y. Mn3O4 Nanocube:An Efficient Electrocatalyst toward Artificial N2 Fixation to NH3[J]. Small, 2018,141803111. doi: 10.1002/smll.201803111

    38. [38]

      Wang Z, Gong F, Zhang L. Electrocatalytic Hydrogenation of N2 to NH3 by MnO:Experimental and Theoretical Investigations[J]. Adv Sci, 2019,61801182. doi: 10.1002/advs.201801182

    39. [39]

      Zhang L, Xie X Y, Wang H. Boosting Electrocatalytic N2 Reduction by MnO2 with Oxygen Vacancies[J]. Chem Commun, 2019,55:4627-4630. doi: 10.1039/C9CC00936A

    40. [40]

      Roche I, Chainet E, Chatenet M. Carbon-Supported Manganese Oxide Nanoparticles as Electrocatalysts for the Oxygen Reduction Reaction (ORR) in Alkaline Medium:Physical Characterizations and ORR Mechanism[J]. J Phys Chem C, 2007,111:1434-1443.

    41. [41]

      Watt G W, Chrisp J D. Spectrophotometric Method for Determination of Hydrazine[J]. Anal Chem, 1952,24:2006-2008. doi: 10.1021/ac60072a044

  • 加载中
    1. [1]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    2. [2]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    3. [3]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    4. [4]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    5. [5]

      Hang Wang Qi Wang Chuan-De Wu . Continuous synthesis of ammonia. Chinese Journal of Structural Chemistry, 2025, 44(3): 100437-100437. doi: 10.1016/j.cjsc.2024.100437

    6. [6]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    7. [7]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    8. [8]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    9. [9]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    10. [10]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    11. [11]

      Xue ZhaoRui ZhaoQian LiuHenghui ChenJing WangYongfeng HuYan LiQiuming PengJohn S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496

    12. [12]

      Shilong LiMing ZhaoYefei XuZhanyi LiuMian LiQing HuangXiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701

    13. [13]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    14. [14]

      Ting XieXun HeLang HeKai DongYongchao YaoZhengwei CaiXuwei LiuXiaoya FanTengyue LiDongdong ZhengShengjun SunLuming LiWei ChuAsmaa FaroukMohamed S. HamdyChenggang XuQingquan KongXuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005

    15. [15]

      Hong-Rui LiXia KangRui GaoMiao-Miao ShiBo BiZe-Yu ChenJun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958

    16. [16]

      Rui LiuYue YuLu DengMaoxia XuHaorong RenWenjie LuoXudong CaiZhenyu LiJingyu ChenHua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545

    17. [17]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    18. [18]

      Ze ZhangLei YangJin-Ru LiuHao HuJian-Li MiChao SuBei-Bei XiaoZhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013

    19. [19]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    20. [20]

      Yiwen XuChaozheng HeChenxu ZhaoLing Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797

Metrics
  • PDF Downloads(1)
  • Abstract views(586)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return