Polyvalent MnOx/C Electrocatalyst for HighlyEfficient Nitrogen Reduction Reaction
- Corresponding author: XU Weilin, weilinxu@ciac.ac.cn
Citation:
BI Yipiao, GONG Xue, YANG Fa, RUAN Mingbo, SONG Ping, XU Weilin. Polyvalent MnOx/C Electrocatalyst for HighlyEfficient Nitrogen Reduction Reaction[J]. Chinese Journal of Applied Chemistry,
;2020, 37(9): 1048-1055.
doi:
10.11944/j.issn.1000-0518.2020.09.200085
Mukherjee S, Cullen D A, Karakalos S. Metal-Organic Framework-Derived Nitrogen-Doped Highly Disordered Carbon for Electrochemical Ammonia Synthesis Using N2 and H2O in Alkaline Electrolytes[J]. Nano Energy, 2018,48:217-226. doi: 10.1016/j.nanoen.2018.03.059
Lv C, Yan C, Chen G. An Amorphous Noble-Metal-Free Electrocatalyst that Enables Nitrogen Fixation under Ambient Conditions[J]. Angew Chem Int Ed, 2018,57:6073-6076. doi: 10.1002/anie.201801538
Shipman M A, Symes M D. Recent Progress Towards the Electrosynthesis of Ammonia from Sustainable Resources[J]. Catal Today, 2017,286:57-68. doi: 10.1016/j.cattod.2016.05.008
Li S J, Bao D, Shi M M. Amorphizing of Au Nanoparticles by CeOx-RGO Hybrid Support Towards Highly Efficient Electrocatalyst for N2 Reduction under Ambient Conditions[J]. Adv Mater, 2017,291700001. doi: 10.1002/adma.201700001
Hao Y, Dong X, Zhai S. Hydrogenated Bismuth Molybdate Nanoframe for Efficient Sunlight-Driven Nitrogen Fixation from Air[J]. Chem-Eur J, 2016,22:18722-18728. doi: 10.1002/chem.201604510
Burgess B K, Wherland S, Newton W E. Nitrogenase Reactivity:Insight into the Nitrogen-Fixing Process Through Hydrogen-Inhibition and HD-Forming Reactions[J]. Biochemistry, 1981,20:5140-5146. doi: 10.1021/bi00521a007
Wang L, Xia M, Wang H. Greening Ammonia toward the Solar Ammonia Refinery[J]. Joule, 2018,2:1055-1074. doi: 10.1016/j.joule.2018.04.017
Zhu D, Zhang L, Ruther R E. Photo-illuminated Diamond as a Solid-state Source of Solvated Electrons in Water for Nitrogen Reduction[J]. Nat Mater, 2013,12:836-841. doi: 10.1038/nmat3696
Li X, Wang W, Jiang D. Efficient Solar-Driven Nitrogen Fixation over Carbon-Tungstic-Acid Hybrids[J]. Chem-Eur J, 2016,22:13819-13822. doi: 10.1002/chem.201603277
Guo C, Ran J, Vasileff A. Rational Design of Electrocatalysts and Photo(electro)catalysts for Nitrogen Reduction to Ammonia (NH3) under Ambient Conditions[J]. Energy Environ Sci, 2018,11:45-56. doi: 10.1039/C7EE02220D
Yandulov D V, Schrock R R. Catalytic Reduction of Dinitrogen to Ammonia at a Single Molybdenum Center[J]. Science, 2003,301:76-78. doi: 10.1126/science.1085326
Murakami T, Nishikiori T, Nohira T. Electrolytic Synthesis of Ammonia in Molten Salts under Atmospheric Pressure[J]. J Am Chem Soc, 2003,125:334-335. doi: 10.1021/ja028891t
Zhang R, Ren X, Shi X. Enabling Effective Electrocatalytic N2 Conversion to NH3 by the TiO2 Nanosheets Array under Ambient Conditions[J]. ACS Appl Mater Interfaces, 2018,10:28251-28255. doi: 10.1021/acsami.8b06647
Kyriakou V, Garagounis I, Vasileiou E. Progress in the Electrochemical Synthesis of Ammonia[J]. Catal Today, 2017,286:2-13. doi: 10.1016/j.cattod.2016.06.014
Singh A R, Rohr B A, Schwalbe J A. Electrochemical Ammonia Synthesis-The Selectivity Challenge[J]. ACS Catal, 2017,7:706-709. doi: 10.1021/acscatal.6b03035
Lu Y, Yang Y, Zhang T. Photoprompted Hot Electrons from Bulk Cross-Linked Graphene Materials and Their Efficient Catalysis for Atmospheric Ammonia Synthesis[J]. ACS Nano, 2016,10:10507-10515. doi: 10.1021/acsnano.6b06472
Wang X, Wang W, Qiao M. Atomically Dispersed Au1 Catalyst towards Efficient Electrochemical Synthesis of Ammonia[J]. Sci Bull, 2018,63:1246-1253. doi: 10.1016/j.scib.2018.07.005
Wang J, Yu L, Hu L. Ambient Ammonia Synthesis via Palladium-Catalyzed Electrohydrogenation of Dinitrogen at Low Overpotential[J]. Nat Commun, 2018,9:1-7. doi: 10.1038/s41467-017-02088-w
Lin B, Liu Y, Heng L. Morphology Effect of Ceria on the Catalytic Performances of Ru/CeO2 Catalysts for Ammonia Synthesis[J]. Ind Eng Chem Res, 2018,57:9127-9135. doi: 10.1021/acs.iecr.8b02126
Wang D, Azofra L M, Harb M. Energy-Efficient Nitrogen Reduction to Ammonia at Low Overpotential in Aqueous Electrolyte under Ambient Conditions[J]. ChemSusChem, 2018,11:3416-3422. doi: 10.1002/cssc.201801632
Tao H, Choi C, Ding L. Nitrogen Fixation by Ru Single-Atom Electrocatalytic Reduction[J]. Chemistry, 2019,5:204-214. doi: 10.1016/j.chempr.2018.10.007
Liu H M, Han S H, Zhao Y. Surfactant-Free Atomically Ultrathin Rhodium Nanosheet Nanoassemblies for Efficient Nitrogen Electroreduction[J]. J Mater Chem A, 2018,6:3211-3217. doi: 10.1039/C7TA10866D
Wang Y, Jia K, Pan Q. Boron-Doped TiO2 for Efficient Electrocatalytic N2 Fixation to NH3 at Ambient Conditions[J]. ACS Sus Chem Eng, 2019,7:117-122. doi: 10.1021/acssuschemeng.8b05332
Chen S, Perathoner S, Ampelli C. Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-Nanotube-Based Electrocatalyst[J]. Angew Chem, 2017,56:2699-2703. doi: 10.1002/anie.201609533
Wang M, Liu S, Qian T. Over 56.55% Faradaic Efficiency of Ambient Ammonia Synthesis Enabled by Positively Shifting the Reaction Potentia[J]. Nat Commun, 2019,10:1-8. doi: 10.1038/s41467-018-07882-8
Cheng H, Ding L X, Chen G F. Molybdenum Carbide Nanodots Enable Efficient Electrocatalytic Nitrogen Fixation under Ambient Conditions[J]. Adv Mater, 2018,301803694. doi: 10.1002/adma.201803694
Ren X, Cui G, Chen L. Electrochemical N2 Fixation to NH3 under Ambient Conditions:Mo2N Nanorod as a Highly Efficient and Selective Catalyst[J]. Chem Commun, 2018,54:8474-8477. doi: 10.1039/C8CC03627F
Zhang L, Ji X, Ren X. Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS2 Catalyst:Theoretical and Experimental Studies[J]. Adv Mater, 2018,301800191. doi: 10.1002/adma.201800191
Yao Y, Yao Y, Feng Q. Chromium Oxynitride Electrocatalysts for Electrochemical Synthesis of Ammonia under Ambient Conditions[J]. Small Methods, 2019,31800324. doi: 10.1002/smtd.201800324
Liu Y, Su Y, Quan X. Facile Ammonia Synthesis from Electrocatalytic N2 Reduction under Ambient Conditions on N-Doped Porous Carbon[J]. ACS Catal, 2018,8:1186-1191. doi: 10.1021/acscatal.7b02165
Song P, Wang H, Kang L. Electrochemical Nitrogen Reduction to Ammonia at Ambient Conditions on Nitrogen and Phosphorus Co-Doped Porous Carbon[J]. Chem Commun, 2019,55:687-690. doi: 10.1039/C8CC09256G
Song Y, Johnson D, Peng R. A Physical Catalyst for the Electrolysis of Nitrogen to Ammonia[J]. Sci Adv, 2018,4e1700336. doi: 10.1126/sciadv.1700336
Jin H, Guo C, Liu X. Emerging Two-Dimensional Nanomaterials for Electrocatalysis[J]. Chem Rev, 2018,118:6337-6408. doi: 10.1021/acs.chemrev.7b00689
Huang L, Wu J, Han P. NbO2 Electrocatalyst Toward 32% Faradaic Efficiency for N2 Fixation[J]. Small Methods, 2019,31800386. doi: 10.1002/smtd.201800386
Liu Q, Zhang X, Zhang B. Ambient N2 Fixation to NH3 Electrocatalyzed by a Spinel Fe3O4 Nanorod[J]. Nanoscale, 2018,10:14386-14389. doi: 10.1039/C8NR04524K
Han J, Ji X, Ren X. MoO3 Nanosheets for Efficient Electrocatalytic N2 Fixation to NH3[J]. J Mater Chem A, 2018,6:12974-12977. doi: 10.1039/C8TA03974G
Wu X, Xia L, Wang Y. Mn3O4 Nanocube:An Efficient Electrocatalyst toward Artificial N2 Fixation to NH3[J]. Small, 2018,141803111. doi: 10.1002/smll.201803111
Wang Z, Gong F, Zhang L. Electrocatalytic Hydrogenation of N2 to NH3 by MnO:Experimental and Theoretical Investigations[J]. Adv Sci, 2019,61801182. doi: 10.1002/advs.201801182
Zhang L, Xie X Y, Wang H. Boosting Electrocatalytic N2 Reduction by MnO2 with Oxygen Vacancies[J]. Chem Commun, 2019,55:4627-4630. doi: 10.1039/C9CC00936A
Roche I, Chainet E, Chatenet M. Carbon-Supported Manganese Oxide Nanoparticles as Electrocatalysts for the Oxygen Reduction Reaction (ORR) in Alkaline Medium:Physical Characterizations and ORR Mechanism[J]. J Phys Chem C, 2007,111:1434-1443.
Watt G W, Chrisp J D. Spectrophotometric Method for Determination of Hydrazine[J]. Anal Chem, 1952,24:2006-2008. doi: 10.1021/ac60072a044
Haoying ZHAI , Lanzong WEN , Wenjie LIAO , Qin LI , Wenjun ZHOU , Kun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Hang Wang , Qi Wang , Chuan-De Wu . Continuous synthesis of ammonia. Chinese Journal of Structural Chemistry, 2025, 44(3): 100437-100437. doi: 10.1016/j.cjsc.2024.100437
Jiangping Chen , Hongju Ren , Kai Wu , Huihuang Fang , Chongqi Chen , Li Lin , Yu Luo , Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
Peipei CUI , Xin LI , Yilin CHEN , Zhilin CHENG , Feiyan GAO , Xu GUO , Wenning YAN , Yuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Xue Zhao , Rui Zhao , Qian Liu , Henghui Chen , Jing Wang , Yongfeng Hu , Yan Li , Qiuming Peng , John S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496
Shilong Li , Ming Zhao , Yefei Xu , Zhanyi Liu , Mian Li , Qing Huang , Xiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701
Tao Zhou , Jing Zhou , Yunyun Liu , Jie-Ping Wan , Fen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683
Ting Xie , Xun He , Lang He , Kai Dong , Yongchao Yao , Zhengwei Cai , Xuwei Liu , Xiaoya Fan , Tengyue Li , Dongdong Zheng , Shengjun Sun , Luming Li , Wei Chu , Asmaa Farouk , Mohamed S. Hamdy , Chenggang Xu , Qingquan Kong , Xuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005
Hong-Rui Li , Xia Kang , Rui Gao , Miao-Miao Shi , Bo Bi , Ze-Yu Chen , Jun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958
Rui Liu , Yue Yu , Lu Deng , Maoxia Xu , Haorong Ren , Wenjie Luo , Xudong Cai , Zhenyu Li , Jingyu Chen , Hua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Ze Zhang , Lei Yang , Jin-Ru Liu , Hao Hu , Jian-Li Mi , Chao Su , Bei-Bei Xiao , Zhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013
Jiajun Lu , Zhehui Liao , Tongxiang Cao , Shifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842
Yiwen Xu , Chaozheng He , Chenxu Zhao , Ling Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797