Citation: TAO Chengye, YANG Zhanxu, LI Yue. Preparation and Electrochemical Properties of Red Phosphorus/Graphite Composite[J]. Chinese Journal of Applied Chemistry, ;2020, 37(9): 1056-1061. doi: 10.11944/j.issn.1000-0518.2020.09.200066 shu

Preparation and Electrochemical Properties of Red Phosphorus/Graphite Composite

  • Corresponding author: YANG Zhanxu, zhanxuy@126.com
  • Received Date: 12 March 2020
    Revised Date: 21 April 2020
    Accepted Date: 1 May 2020

    Fund Project: Supported by the National Natural Science Foundation of China(No.21671092), and Laoning Provincial Science and Technology Inovation Leading Talent Project(No. XLYC1802057)Laoning Provincial Science and Technology Inovation Leading Talent Project XLYC1802057National Natural Science Foundation of China 21671092

Figures(4)

  • In this paper, a kind of bulk submicron red phosphorus/graphite composite (smRP/G) was studied, which was prepared by mechanical ball milling submicron red phosphorus and graphite. Its characteristics were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), cyclic voltammogram (CV) and etc. Compared with common red new energystorage materials, new catalytic materials, submicron red phosphorus is easier to form composites with graphite by ball milling, which can effectively improve the lithium storage capacity of graphite materials. It provides an idea for the application of red phosphorus in the negative electrode materials of lithium-ion batteries. In this work, under the condition of adding a mass percent of 3% red phosphorus, smRP/G shows the best performance. At the current density of 100 mA/g, the first discharge capacity of 1417 mA·h/g is displayed, and the first coulomb efficiency is 67.4%. The reversible capacity of 700 mA·h/g is maintained after 200 cycles.
  • 加载中
    1. [1]

      Yu H C, Ling C, Bhattacharya J. Designing the Next Generation High Capacity Battery Electrodes[J]. Energy Environ Sci, 2014,7(5):1760-1768. doi: 10.1039/c3ee43154a

    2. [2]

      Li W, Chen S, Yu J. In-situ Synthesis of Interconnected SWCNT/OMC Framework on Silicon Nanoparticles for High Performance Lithium-Ion Batteries[J]. Green Energy Environ, 2016,1(1):91-99.  

    3. [3]

      Xu G L, Chen Z H, Zhong G M. Nanostructured Black Phosphorus/Ketjenblack Multiwalled Carbon Nanotubes Composite as High Performance Anode Material for Sodium-Ion Batteries[J]. Nano Lett, 2016,16(6):3955-3965. doi: 10.1021/acs.nanolett.6b01777

    4. [4]

      Chevrier V L, Ceder G. Challenges for Na-ion Negative Electrodes[J]. J Electrochem Soc, 2011,158(9):A1011-A1014. doi: 10.1149/1.3607983

    5. [5]

      Sun L Q, Li M J, Sun K. Electrochemical Activity of Black Phosphorus as an Anode Material for Lithium-Ion Batteries[J]. J Phys Chem C, 2012,116(28):14772-14779. doi: 10.1021/jp302265n

    6. [6]

      Qian J, Wu X, Cao Y. High Capacity and Rate Capability of Amorphous Phosphorus for Sodium-Ion Batteries[J]. Angew Chem Int Ed, 2013,52(17):4633-4636. doi: 10.1002/anie.201209689

    7. [7]

      Dahbi M, Yabuuchi N, Kubota K. Negative Electrodes for Na-Ion Batteries[J]. Phys Chem Chem Phys, 2014,16(29):15007-15028. doi: 10.1039/c4cp00826j

    8. [8]

      Akahama Y, Endo S, Narita S. Electrical Properties of Black Phosphorus Single Crystals[J]. J Phys Soc Jpn, 1983,52(6):2148-2155. doi: 10.1143/JPSJ.52.2148

    9. [9]

      Li X, Deng B, Wang X. Synthesis of Thin-Film Black Phosphorus on a Flexible Substrate[J]. 2D Mater, 2015,2(3)031002. doi: 10.1088/2053-1583/2/3/031002

    10. [10]

      Qian J F, Wu X Y, Cao Y L. High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion Batteries[J]. Angew Chem, ,125(17):4731-4734. doi: 10.1002/ange.201209689

    11. [11]

      Kim Y, Park Y, Choi A. An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium-Ion Batteries[J]. Adv Mater, 2013,25(22):3045-3049. doi: 10.1002/adma.201204877

    12. [12]

      Li W J, Chou S L, Wang J Z. Simply Mixed Commercial Red Phosphorus and Carbon Nanotube Composite with Exceptionally Reversible Sodium-Ion Storage[J]. Nano Lett, 2013,13(11):5480-5484. doi: 10.1021/nl403053v

    13. [13]

      Extance P, Elliott S R. Pressure Dependence of the Electrical Conductivity of Amorphous Red Phosphorus[J]. Philos Mag B, 1981,43(3):469-483. doi: 10.1080/01418638108222110

    14. [14]

      Wang L, He X, Li J. Nano-Structured Phosphorus Composite as High-Capacity Anode Materials for Lithium Batteries[J]. Angew Chem Int Ed, 2012,51(36):9034-9037. doi: 10.1002/anie.201204591

    15. [15]

      Xu J, Jeon I Y, Ma J. Understanding of the Capacity Contribution of Carbon in Phosphorus-Carbon Composites for High-Performance Anodes in Lithium-Ion Batteries[J]. Nano Res, 2017,10(4):1268-1281. doi: 10.1007/s12274-016-1383-4

    16. [16]

      Liu S, Xu H, Bian X. Nanoporous Red Phosphorus on Reduced Graphene Oxide as Superior Anode for Sodium-Ion Batteries[J]. ACS Nano, 2018,12(7):7380-7387. doi: 10.1021/acsnano.8b04075

    17. [17]

      Li W, Yang Z, Li M. Amorphous Red Phosphorus Embedded in Highly Ordered Mesoporous Carbon with Superior Lithium and Sodium Storage Capacity[J]. Nano Lett, 2016,16(3):1546-1553. doi: 10.1021/acs.nanolett.5b03903

    18. [18]

      Qian J F, Qiao D, Ai X P. Reversible 3-Li Storage Reactions of Amorphous Phosphorus as High Capacity and Cycling-Stable Anodes for Li-Ion Batteries[J]. Chem Commun, ,48(71)8931. doi: 10.1039/c2cc34388f

    19. [19]

      Ceppatelli M, Bini R, Caporali M. High-Pressure Chemistry of Red Phosphorus and Water under Near-UV Irradiation[J]. Angew Chem Int Ed, 2013,52(8):2313-2317. doi: 10.1002/anie.201208684

    20. [20]

      Lee G H, Jo M R, Zhang K. A Reduced Graphene Oxide-Encapsulated Phosphorus/Carbon Composite as a Promising Anode Material for High-Performance Sodium-Ion Batteries[J]. J Mater Chem A, 2017,5(7):3683-3690. doi: 10.1039/C6TA09967J

    21. [21]

      Chang W C, Tseng K W, Tuan H Y. Solution Synthesis of Iodine-Doped Red Phosphorus Nanoparticles for Lithium-Ion Battery Anodes[J]. Nano Lett, 2017,17(2):1240-1247. doi: 10.1021/acs.nanolett.6b05081

    22. [22]

      Bai A, Wang L, Li J. Composite of Graphite/Phosphorus as Anode for Lithium-Ion Batteries[J]. J Power Sources, 2015,289:100-104. doi: 10.1016/j.jpowsour.2015.04.168

    23. [23]

      Liang S, Li N, Wang H. "Rebar-reinforced concrete" Carbon Nanotubes/Carbon Black@Phosphorus Multilevel Architecture from One-Pot Ball Milling as Anode Materials[J]. Ceram Int, 2019,45(1):1331-1338. doi: 10.1016/j.ceramint.2018.10.023

    24. [24]

      Li X, Chen G, Le Z. Well-Dispersed Phosphorus Nanocrystals Within Carbon via High-Energy Mechanical Milling for High Performance Lithium Storage[J]. Nano Energy, 2019,59:464-471. doi: 10.1016/j.nanoen.2019.02.061

    25. [25]

      Jiao X, Liu Y, Li B. Amorphous Phosphorus-Carbon Nanotube Hybrid Anode with Ultralong Cycle Life and High-Rate Capability for Lithium-Ion Battery[J]. Carbon, 2019,148:518-524. doi: 10.1016/j.carbon.2019.03.053

    26. [26]

      Lodico J J, Lai C H, Woodall M. Irreversibility at Macromolecular Scales in the Flake Graphite of the Lithium-Ion Battery Anode[J]. J Power Sources, 2019,436226841. doi: 10.1016/j.jpowsour.2019.226841

    27. [27]

      Song J, Yu Z, Gordin M L. Chemically Bonded Phosphorus/Graphene Hybrid as a High Performance Anode for Sodium-Ion Batteries[J]. Nano Lett, 2014,14(11):6329-6335. doi: 10.1021/nl502759z

    28. [28]

      Fan X, Xu H, Zuo S. Preparation and Supercapacitive Properties of Phosphorus-Doped Reduced Graphene Oxide Hydrogel[J]. Electrochim Acta, 2020,330135207. doi: 10.1016/j.electacta.2019.135207

  • 加载中
    1. [1]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    2. [2]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    3. [3]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    12. [12]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    13. [13]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    14. [14]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    15. [15]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    16. [16]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    17. [17]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    18. [18]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    19. [19]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    20. [20]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

Metrics
  • PDF Downloads(14)
  • Abstract views(1119)
  • HTML views(194)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return