Citation: LIU Ning, WANG Danfeng, WU Suyun, LIU Shuilin, FU Lin, LIU Yuejin. Catalytic Synthesis of Bisphenol F over Short-Channeled Mesoporous Molecular Sieve Zr-Ce-SBA-15 Supported Acidic Ionic Liquids[J]. Chinese Journal of Applied Chemistry, ;2020, 37(9): 1038-1047. doi: 10.11944/j.issn.1000-0518.2020.09.200055 shu

Catalytic Synthesis of Bisphenol F over Short-Channeled Mesoporous Molecular Sieve Zr-Ce-SBA-15 Supported Acidic Ionic Liquids

  • Corresponding author: LIU Ning, liuning0731@163.com LIU Yuejin, xdlyj@163.com
  • Received Date: 28 February 2020
    Revised Date: 24 April 2020
    Accepted Date: 3 June 2020

    Fund Project: Supported by the National Natural Science Foundation of China(No.21878255.), the Hunan Provincial Natural Science Foundation of China(No.2020JJ5117, No.2019JJ50107, No.2016JJ4028), the Foundation of Hunan Educational Committee(No.18B465), the Talent Scientific Research Fund of Hunan Institute of Technology(No.HQ 17014, No.HQ 17011), the Foundation of Key Laboratory of Functional Metal-Organic Compounds of Hunan Province(No.MO20K02), and the Characteristic Application Discipline of Material Science and Engineering in Hunan(No.Xiang-Jiao-Tong[2018]369)

Figures(7)

  • Two supported acidic ionic liquids (ILs) consisting of SBA-15-ILs (SILs) and Zr-Ce-SBA-15-ILs(ZCSILs) were prepared by combining acidic ionic liquids with the silica-based support. The physio-chemical properties of the obtained catalysts were characterized by Fourier transform infrared (FT-IR) spectroscopy, thermalgravimetry-differential thermal gravimetry (TG-DTG), X-ray diffraction (XRD), Brunauer Emmett Teller (BET), transimition electron microscopy (TEM), scanning electron microscopy (SEM) and organic elemental analysis (OEA) measurements. The catalytic activity of the prepared catalysts was evaluated in the hydroxyalkylation of phenol and aqueous formaldehyde to bisphenol F. The effects of operating variables, such as type of catalysts, molar ratio of phenol to formaldehyde, reaction temperature, reaction time and addition of catalysts on the yield of BPF and selectivity were investigated. Under the optimum conditions (catalyst/formaldehyde mass ratio 0.36, phenol/formaldehyde molar ratio 30:1, reaction temperature 80 ℃ and reaction time 60 min), a high bisphenol F yield of 95.6% with 44.8% selectivity to 4, 4'-BPF can be achieved over the short-channeled ZCSILs catalyst with large specific surface area and high loading amount of ionic liquids and its catalytic activity is still good after being reused for 5 times.
  • 加载中
    1. [1]

      Li C, Cai H, Zhang B. Tailored One-Pot Production of Furan-Based Fuels from Fructose in an Ionic Liquid Biphasic Solvent System[J]. Chinese J Catal, 2015,36:1638-1646. doi: 10.1016/S1872-2067(15)60927-5

    2. [2]

      LI Changzhi, WANG Aiqin, ZHANG Tao. Progress of Conversion of Cellulose Resource in Ionic Liquids[J]. CIESC J, 2013,64(1):182-197.  

    3. [3]

      QU Haonan, BAO Chong, MA Wenjing. Hydrolysis of Cellulose by Solid Carbon Sulfonic acid Supported 1-Butyl-3-methylimidazolium Chloride[J]. Chinese J Appl Chem, 2019,36(1):58-64.  

    4. [4]

      SHAN Ruoni, CUI Xing, DING Qi. Racemic Metoprolol Separation by Enantioselective Liquid-Liquid Extraction with Amino Acid Ionic Liquids[J]. J Chem Eng Chinese Uinv, 2019,33(6):1444-1449.  

    5. [5]

      Li T, Yan X, Liu J. Friedel-Crafts Alkylation Route for Preparation of Pendent Side Chain Imidazolium-Functionalized Polysulfone Anion Exchange Membranes for Fuel Cells[J]. J Membr Sci, 2019,573:157-166. doi: 10.1016/j.memsci.2018.11.079

    6. [6]

      Yang J, Feng Y, Zeng T. Synthesis of Biodiesel via Transesterification of Tung Oil Catalyzed by New Brönsted Acidic Ionic Liquid[J]. Chem Eng Res Des, 2017,117:584-592. doi: 10.1016/j.cherd.2016.09.038

    7. [7]

      Miao C, Hou Q, Wen Y. Long-Chained Acidic Ionic Liquids-Catalyzed Cyclization of 2-Substituted Aminoaromatics with β-Diketones:A Metal-Free Strategy to Construct Benzoazoles[J]. ACS Sustainable Chem Eng, 2019,7(14):12008-12013.

    8. [8]

      Yue S, Wang P, Hao X. Synthesis of Cyclic Carbonate from CO2 and Epoxide Using Bifunctional Imidazolium Ionic Liquid Under Mild Conditions[J]. Fuel, 2019,251:233-241. doi: 10.1016/j.fuel.2019.04.039

    9. [9]

      Chiappe C, Rodriguez Douton M J, Mezzetta A. Recycle and Extraction:Cornerstones for an Efficient Conversion of Cellulose into 5-Hydroxymethylfurfural in Ionic Liquids[J]. ACS Sustainable Chem Eng, 2017,5(6):5529-5536. doi: 10.1021/acssuschemeng.7b00875

    10. [10]

      Jiang B, Yang H, Zhang L. Efficient Oxidative Desulfurization of Diesel Fuel Using Amide-Based Ionic Liquids[J]. Chem Eng J, 2016,283:89-96. doi: 10.1016/j.cej.2015.07.070

    11. [11]

      Yang H, Jiang B, Sun Y. Synthesis and Oxidative Desulfurization of Novel Lactam-Based Brönsted-Lewis Acidic Ionic Liquids[J]. Chem Eng J, 2016,306:131-138. doi: 10.1016/j.cej.2016.07.044

    12. [12]

      Sarma B, Srivastava R. Highly Efficient and Recyclable Basic Ionic Liquids Supported on SBA-15 for the Synthesis of Substituted Styrenes, Carbinolamides, and Naphthopyrans[J]. Mol Catal, 2017,427:62-72. doi: 10.1016/j.molcata.2016.11.030

    13. [13]

      Zhao Q, Yang C, Fang M. Performance of Brönsted-Lewis Acidic Ionic liquids Supported Ti-SBA-15 for the Esterification of Acetic Acid to Benzyl Alcohol[J]. Appl Catal A:Gen, 2020117470.

    14. [14]

      Zhou Y, Liu J, Huang R. Covalently Immobilized Ionic Liquids on Single Layer Nanosheets for Heterogeneous Catalysis Applications[J]. Dalton Trans, 2017,46(38):13126-13134. doi: 10.1039/C7DT01510K

    15. [15]

      Zhou Q, Chen F, Wu W. Reactive Orange 5 Removal from Aqueous Solution Using Hydroxyl Ammonium Ionic Liquids/Layered Double Hydroxides Intercalation Composites[J]. Chem Eng J, 2016,285:198-206. doi: 10.1016/j.cej.2015.10.004

    16. [16]

      Yoshida Y, Fujie K, Lim D W. Superionic Conduction over a Wide Temperature Range in a Metal-Organic Framework Impregnated with Ionic Liquids[J]. Angew Chem Int Ed, 2019,58(32):10909-10913. doi: 10.1002/anie.201903980

    17. [17]

      Jiang T, Fang M, Li Y. Alkylation of Phenol/tert-Butyl Alcohol on Ionic Liquid-Immobilized SBA-15 with Different Pore Sizes[J]. J Taiwan Inst Chem E, 2017,80:1031-1040. doi: 10.1016/j.jtice.2017.09.029

    18. [18]

      He Y, Zhang Q, Zhan X. Synthesis of Efficient SBA-15 Immobilized Ionic Liquid Catalyst and Its Performance for Friedel-Crafts Reaction[J]. Catal Today, 2016,276:112-120. doi: 10.1016/j.cattod.2016.01.045

    19. [19]

      Dai L, Zhao Q, Fang M. Catalytic Activity Comparison of Zr-SBA-15 Immobilized by a Brönsted-Lewis Acidic Ionic Liquid in Different Esterifications[J]. RSC Adv, 2017,7(51):32427-32435. doi: 10.1039/C7RA04950A

    20. [20]

      Wang Y, Chen Z, Yu F. Preparation of Epoxy-Acrylic Latex Based on Bisphenol F Epoxy Resin[J]. J Macromol Sci A, 2018,55(2):205-212. doi: 10.1080/10601325.2017.1410065

    21. [21]

      Tan Y, Li Y, Wei Y. The Hydroxyalkylation of Phenol with Formaldehyde over Mesoporous M (Al, Zr, Al-Zr)-SBA-15 Catalysts:The Effect on the Isomer Distribution of Bisphenol F[J]. Catal Commun, 2015,67:21-25. doi: 10.1016/j.catcom.2015.03.019

    22. [22]

      Wei Y, Li Y, Tan Y. Short-channeled Mesoporous Zr-Al-SBA-15 as a Highly Efficient Catalyst for Hydroxyalkylation of Phenol with Formaldehyde to Bisphenol F[J]. Chem Eng J, 2016,298:271-280. doi: 10.1016/j.cej.2016.04.038

    23. [23]

      Wang D, He Z, Wu Z. Highly Selective Synthesis for 4, 4'-Bisphenol F from Phenol and Formaldehyde Catalyzed with[J]. Chinese J Chem Eng, 2016,24(9):1166-1170. doi: 10.1016/j.cjche.2016.02.005

    24. [24]

      Çitak A, Erdem B, Erdem S. Synthesis, Characterization and Catalytic Behavior of Functionalized Mesoporous SBA-15 with Various Organo-silanes[J]. J Colloid Interface Sci, 2012,369(1):160-163. doi: 10.1016/j.jcis.2011.11.070

    25. [25]

      Halamová D, Badaničová M, Zeleňák V. Naproxen Drug Delivery Using Periodic Mesoporous Silica SBA-15[J]. Appl Surf Sci, 2010,256:6489-6494. doi: 10.1016/j.apsusc.2010.04.044

    26. [26]

      Xie W, Fan M. Biodiesel Production by Transesterification Using Tetraalkylammonium Hydroxides Immobilized onto SBA-15 as a Solid Catalyst[J]. Chem Eng J, 2014,239:60-67. doi: 10.1016/j.cej.2013.11.009

    27. [27]

      Garade A C, Kshirsagar V S, Rode C V. Selective Hydroxyalkylation of Phenol to Bisphenol F over Dodecatungstophosphoric Acid(DTP) Impregnated on Fumed Silica[J]. Appl Catal A:Gen, 2009,354(1):176-182.  

    28. [28]

      Jana S K, Kugita T, Namba S. Aluminum-Grafted MCM-41 Molecular Sieve:An Active Catalyst for Bisphenol F Synthesis Process[J]. Appl Catal A:Gen, 2004,266(2):245-250. doi: 10.1016/j.apcata.2004.02.013

  • 加载中
    1. [1]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    7. [7]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    8. [8]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    9. [9]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    10. [10]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    11. [11]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    12. [12]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    13. [13]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    14. [14]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    15. [15]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    16. [16]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    17. [17]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    18. [18]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    19. [19]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    20. [20]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

Metrics
  • PDF Downloads(8)
  • Abstract views(969)
  • HTML views(202)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return