Citation: HUANG Jieying, LIU Jianjun, ZUO Shengli, HAN Wenjing, YU Yingchun. Preparation of Ag3PO4 Quantum Dots/g-C3N4 Nanosheet Composite Photocatalysts and Its Activity for Selective Oxidation of Benzyl Alcohol[J]. Chinese Journal of Applied Chemistry, ;2020, 37(9): 1030-1037. doi: 10.11944/j.issn.1000-0518.2020.09.200047 shu

Preparation of Ag3PO4 Quantum Dots/g-C3N4 Nanosheet Composite Photocatalysts and Its Activity for Selective Oxidation of Benzyl Alcohol

  • Corresponding author: LIU Jianjun, jjliu717@aliyun.com
  • Received Date: 20 February 2020
    Revised Date: 2 April 2020
    Accepted Date: 29 April 2020

    Fund Project: National Natural Science Foundation of China No.21876008Supported by the National Natural Science Foundation of China(No.21876008)

Figures(9)

  • In this paper, a series of Ag3PO4 quantum dots/g-C3N4 nanosheet composite photocatalysts was prepared at room temperature for the first time with the ultrathin g-C3N4 nanosheet exfoliated by thermal oxidation as the support. The morphology, structure and optical properties of the photocatalysts were characterized by transmission electron microscopy(TEM), high resolution TEM(HRTEM), powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy analysis (FT-IR), ultraviolet-visible diffuse-reflectance spectroscopy (UV-Vis DRS), photoluminescence spectroscopy (PL) techniques. The photocatalytic selective oxidation of benzyl alcohol was investigated. The results show that quantum dots of well-crystallized Ag3PO4 with the particle size of 3~5 nm are homogeneously dispersed on the g-C3N4 nanosheet. For the photocatalysts with the mass ratio of 0.6 Ag3PO4 to g-C3N4 in acetonitrile, the maximum conversion of benzyl alcohol is 32.1%, and the highest selectivity of benzaldehyde is 90%. The results of active species capture experiment show that the main active species of photogenerated hole are responsible for the selective oxidation. The results of energy band calculation show that the composite catalyst has a suitable oxidation potential for benzyl alcohol into benzaldehyde.
  • 加载中
    1. [1]

      Pan J, Liu J, Zuo S. Structure of Z-scheme CdS/CQDs/BiOCl Heterojunction with Enhanced Photocatalytic Activity for Environmental Pollutant Elimination[J]. Appl Surf Sci, 2018,444(30):177-186.  

    2. [2]

      Pan J, Liu J, Zuo S. Synthesis of Cuboid BiOCl Nanosheets Coupled with CdS Quantum Dots by Region-Selective Deposition Process with Enhanced Photocatalytic Activity[J]. Mater Res Bull, 2018,103:216-224. doi: 10.1016/j.materresbull.2018.03.043

    3. [3]

      Khan U A, Liu J, Pan J. Fabrication of Floating CdS/EP Photocatalyst by Facile Liquid Phase Deposition for Highly Efficient Degradation of Rhodamine B (RhB) under Visible Light Irradiation[J]. Mater Sci Semicond Proc, 2018,83(15):201-210.  

    4. [4]

      Pan J, Liu J, Ma H. Structure of Flower-like Hierarchical CdS QDs/Bi/Bi2WO6 Heterojunction with Enhanced Photocatalytic Activity[J]. New J Chem, 2018,42(9):7293-7300. doi: 10.1039/C8NJ00394G

    5. [5]

      Mu Y F, Zhang W, Guo X X. Water-tolerant Lead Halide Perovskite Nanocrystals as Efficient Photocatalysts for Visible-Light-Driven CO2 Reduction in Pure Water[J]. ChemSusChem, 2019,12(21):4769-4774. doi: 10.1002/cssc.201902192

    6. [6]

      Bhosale R, Jain S, Vinod C P. Direct Z-Scheme g-C3N4/FeWO4 Nanocomposite for Enhanced and Selective Photocatalytic CO2 Reduction Under Visible Light[J]. ACS Appl Mater Interfaces, 2019,11(6):6174-6183. doi: 10.1021/acsami.8b22434

    7. [7]

      Di T, Zhu B, Cheng B. A Direct Z-scheme g-C3N4/SnS2 Photocatalyst with Superior Visible-Light CO2 Reduction Performance[J]. J Catal, 2017,352:532-541. doi: 10.1016/j.jcat.2017.06.006

    8. [8]

      Chen Z, Fan T, Zhang Q. Interface Engineering:Surface Hydrophilic Regulation of LaFeO3 Towards Enhanced Visible Light Photocatalytic Hydrogen Evolution[J]. J Colloid Interface Sci, 2019,536(15):105-111.

    9. [9]

      Zhong W, Shen S, He M. The Pulsed Laser-induced Schottky Junction via in situ Forming Cd Clusters on CdS Surfaces Toward Efficient Visible Light-driven Photocatalytic Hydrogen Evolution[J]. Appl Catal B:Environ, 2019,258(5)117967.  

    10. [10]

      Bai C, Bi J, Wu J. In-situ Solid-phase Fabrication of Ag/AgX (X=Cl, Br, I)/g-C3N4 Composites for Enhanced Visible-light Hydrogen Evolution[J]. Int J Hydrogen Energy, 2019,44(39):21397-21405. doi: 10.1016/j.ijhydene.2019.06.145

    11. [11]

      Nicewicz D A, MacMillan D W C. Merging Photoredox Catalysis with Organocatalysis:The Direct Asymmetric Alkylation of Aldehydes[J]. Science, 2008,322(5898):77-80. doi: 10.1126/science.1161976

    12. [12]

      Zhang M, Chen C, Ma W. Visible-Light-Induced Aerobic Oxidation of Alcohols in a Coupled Photocatalytic System of Dye-Sensitized TiO2 and TEMPO[J]. Angew Chem Int Ed, 2008,47(50):9730-9733. doi: 10.1002/anie.200803630

    13. [13]

      Su F, Mathew S C, Lipner G. MPG-C3N4-Catalyzed Selective Oxidation of Alcohols Using O2 and Visible Light[J]. J Am Chem Soc, 2010,132(46):16299-16301. doi: 10.1021/ja102866p

    14. [14]

      Meng S, Ning X, Chang S. Simultaneous Dehydrogenation and Hydrogenolysis of Aromatic Alcohols in One Reaction System via Visible-Light-Sriven Heterogeneous Photocatalysis[J]. J Catal, 2018,357:247-256. doi: 10.1016/j.jcat.2017.11.015

    15. [15]

      Dai X, Xie M, Meng S. Coupled Systems for Selective Oxidation of Aromatic Alcohols to Aldehydes and Reduction of Nitrobenzene into Aniline Using CdS/g-C3N4 Photocatalyst under Visible Light Irradiation[J]. Appl Catal B:Environ, 2014,158:382-390.  

    16. [16]

      Xiao X, Jiang J, Zhang L. Selective Oxidation of Benzyl Alcohol into Benzaldehyde over Semiconductors under Visible Light:The Case of Bi12O17Cl2 Nanobelts[J]. Appl Catal B:Environ, 2013,142:487-493.  

    17. [17]

      Cui X, Tian L, Xian X. Solar Photocatalytic Water Oxidation over Ag3PO4/g-C3N4 Composite Materials Mediated by Metallic Ag and Graphene[J]. Appl Surf Sci, 2018,430(1):108-115.  

    18. [18]

      Mei J, Zhang D, Li N. The Synthesis of Ag3PO4/g-C3N4 Nanocomposites and the Application in the Photocatalytic Degradation of Bisphenol A Under Visible Light Irradiation[J]. J Alloys Comp, 2018,749(15):715-723.  

    19. [19]

      Wang Z, Hu T, Dai K. Construction of Z-Scheme Ag3PO4/Bi2WO6 Composite with Excellent Visible-Light Photodegradation Activity for Removal of Organic Contaminants[J]. Chinese J Catal, 2017,38(12):2021-2029. doi: 10.1016/S1872-2067(17)62942-5

    20. [20]

      Cheng R, Wen J Y, Xia J C. Visible-Light Photocatalytic Activity and Photo-corrosion Mechanism of Ag3PO4/g-C3N4/PVA Composite Film in Degrading Gaseous Toluene[J]. Catal Today, 2019,335(1):565-573.  

    21. [21]

      Jia J, Huang W, Feng C. Fabrication of g-C3N4/Ag3PO4-H2O2 Heterojunction System with Enhanced Visible-light Photocatalytic Activity and Mechanism Insight[J]. J Alloys Comp, 2019,790(25):616-625.  

    22. [22]

      Li Y, Jin R, Xing Y. Macroscopic Foam-Like Holey Ultrathing-C3N4 Nanosheets for Drastic Improvement of Visible-Light Photocatalytic Activity[J]. Adv Energy Mater, 2016,6(24)1601273. doi: 10.1002/aenm.201601273

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    3. [3]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    4. [4]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    5. [5]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    6. [6]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    7. [7]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    9. [9]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    10. [10]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    11. [11]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    12. [12]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    13. [13]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    14. [14]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . 废塑料促进S型NiCr2O4/孪晶Cd0.5Zn0.5S同质异质结光催化产氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    15. [15]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    16. [16]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    17. [17]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    18. [18]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    19. [19]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    20. [20]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

Metrics
  • PDF Downloads(11)
  • Abstract views(1443)
  • HTML views(415)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return