One-Pot Synthesis of Fluorescent Polyvinyl Pyrrolidone-Stabilized Cu Nanoclusters for the Determination of Quercetin
- Corresponding author: GUO Yuyu, guoyuyu@tyut.edu.cn
Citation:
ZHANG Shen, GUO Yuyu. One-Pot Synthesis of Fluorescent Polyvinyl Pyrrolidone-Stabilized Cu Nanoclusters for the Determination of Quercetin[J]. Chinese Journal of Applied Chemistry,
;2020, 37(9): 1069-1075.
doi:
10.11944/j.issn.1000-0518.2020.09.200045
Borska S, Chmielewska M, Wysocka T. In Vitro Effect of Quercetin on Human Gastric Carcinoma:Targeting Cancer Cells Death and MDR[J]. Food Chem Toxicol, 2012,50(9):3375-3383. doi: 10.1016/j.fct.2012.06.035
Rogerio A P, Dora C L, Andrade E L. Anti-inflammatory Effect of Quercetin-loaded Microemulsion in the Airways Allergic Inflammatory Model in Mice[J]. Pharmacol Res, 2010,61(4):288-397. doi: 10.1016/j.phrs.2009.10.005
Ferrer E G, Salinas M V, Correa M J. Synthesis, Characterization, Antitumoral and Osteogenic Activities of Quercetin Vanadyl(IV) Complexes[J]. J Biol Inorg Chem, 2006,11(6):791-801. doi: 10.1007/s00775-006-0122-9
Kim Y H, Lee D H, Jeong J H. Quercetin Augments TRAIL-Induced Apoptotic Death:Involvement of the ERK Signal Transduction Pathway[J]. Biochem Pharmacol, 2008,75(10):1946-1958. doi: 10.1016/j.bcp.2008.02.016
Gil J J, Langner E, Wertel I. Temozolomide, Quercetin and Cell Death in the MOGGCCM Astrocytoma Cell Line[J]. Chem Biol Interact, 2010,188(1):190-203. doi: 10.1016/j.cbi.2010.07.015
Pejic N, Kuntic V, Vujic Z. Direct Spectrophotometric Determination of Quercetin in the Presence of Ascorbic Acid[J]. Il Farmaco, 2004,59(1):21-24. doi: 10.1016/j.farmac.2003.07.013
Nugroho A, Lim S C, Lee C M. Simultaneous Quantitative Determination and Validation of Quercetin Glycosides with Peroxynitrite-Scavenging Effects from Saussurea grandifolia[J]. J Pharm Biomed Anal, 2001,61(5):247-251.
Yu J B, Jin H, Gui R J. A Facile Strategy for Ratiometric Electrochemical Sensing of Quercetin in Electrolyte Solution Directly Using Bare Glassy Carbon Electrode[J]. J Electroanal Chem, 2017,795:97-102. doi: 10.1016/j.jelechem.2017.04.053
Wu D D, Chen Z. ZnS Quantum Dots-Based Fluorescence Spectroscopic Technique for the Detection of Quercetin[J]. Luminescence, 2014,29(4):307-313. doi: 10.1002/bio.2545
Dwiecki K, Kwiatkowska P, Siger A. Determination of Quercetin in Onion (Allium cepa) Using β-Cyclodextrin-Coated CdSe/ZnS Quantum Dot-Based Fluorescence Spectroscopic Technique[J]. Int J Food Sci Tech, 2015,50(6):1366-1373. doi: 10.1111/ijfs.12772
Gao Y F, Jin X, Kong F Y. One-pot Green and Simple Synthesis of Actinian Nickel-Doped Carbon Nanoflowers for Ultrasensitive Sensing of Quercetin[J]. Analyst, 2019,144(24):7283-7289. doi: 10.1039/C9AN01907C
Aparna R S, Devi J S A, Anjana R R. Reversible Fluorescence Modulation of BSA Stabilised Copper Nanoclusters for the Selective Detection of Protamine and Heparin[J]. Analyst, 2019,144(5):1799-1808. doi: 10.1039/C8AN01703D
Aparna R S, Syamchand S S, George S. Tannic Acid Stabilised Copper Nanocluster Developed Through Microwave Mediated Synthesis as a Fluorescent Probe for the Turn On Detection of Dopamine[J]. J Clust Sci, 2017,28(4):2223-2238. doi: 10.1007/s10876-017-1221-1
Bhamore J R, Jha S, Mungara A K. One-step Green Synthetic Approach for the Preparation of Multicolor Emittingcopper Nanoclusters and Their Applications in Chemical Species Sensing and Bioimaging[J]. Biosens Bioelectron, 2016,80:243-248. doi: 10.1016/j.bios.2016.01.066
Ai L, Jiang W R, Liu Z Y. Engineering a Red Emission of Copper Nanocluster Self-assembly Architectures by Employing Aromatic Thiols as Capping Ligands[J]. Nanoscale, 2017,9:12618-12627. doi: 10.1039/C7NR03985A
Basu K, Gayen K, Mitra T. Different Color Emissive Copper Nanoclusters and Cancer Cell Imaging[J]. ChemNanoMat, 2017,3:808-814. doi: 10.1002/cnma.201700162
Bagheri H, Afkhami A, Khoshsafar H. Protein Capped Cu Nanoclusters-SWCNT Nanocomposite as a Novel Candidate of High Performance Platform for Organophosphates Enzymeless Biosensor[J]. Biosens Bioelectron, 2017,89:829-836. doi: 10.1016/j.bios.2016.10.003
Baig M M F, Chen C T, Chen Y C. Photoluminescence Determination of Aluminum Using Glutathione-Capped Gold Nanoclusters[J]. Anal Lett, 2016,49(14):2246-2258. doi: 10.1080/00032719.2016.1143477
Chen P C, Ma J Y, Chen L Y. Photoluminescent AuCu Bimetallic Nanoclusters as pH Sensors and Catalysts[J]. Nanoscale, 2014,6(7):3503-3507. doi: 10.1039/c3nr06123j
Lu D T, Chen Z, Li Y F. Determination of Mercury(II) by Fluorescence Using Deoxyribonucleic Acid Stabilized Silver Nanoclusters[J]. Anal Lett, 2014,48(2):281-290.
Yanting HUANG , Hua XIANG , Mei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196
Rong Tian , Yadi Yang , Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064
Lulu DONG , Jie LIU , Hua YANG , Yupei FU , Hongli LIU , Xiaoli CHEN , Huali CUI , Lin LIU , Jijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171
Tingting XU , Wenjing ZHANG , Yongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
Tingting Yu , Si Chen , Lianglong Sun , Tongtong Shi , Kai Sun , Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022
Xiaxue Chen , Yuxuan Yang , Ruolin Yang , Yizhu Wang , Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019
Feng Lu , Tao Wang , Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005
Qin Hou , Jiayi Hou , Aiju Shi , Xingliang Xu , Yuanhong Zhang , Yijing Li , Juying Hou , Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056
Chen LU , Qinlong HONG , Haixia ZHANG , Jian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407
Zijuan LI , Xuan LÜ , Jiaojiao CHEN , Haiyang ZHAO , Shuo SUN , Zhiwu ZHANG , Jianlong ZHANG , Yanling MA , Jie LI , Zixian FENG , Jiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
Liwei Wang , Guangran Ma , Li Wang , Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094
Zeyi Yan , Ruitao Liu , Xinyu Qi , Yuxiang Zhang , Lulu Sun , Xiangyuan Li , Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110
Yixuan Zhu , Qingtong Wang , Jin Li , Lin Chen , Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090
Qin Li , Ziyao Jia , Ye Chen , Mingze Ma , Lin Li , Tao Huang . A Journey into the Enigmatic World of Pickering Emulsion: A Chemical Science Popularization Experiment. University Chemistry, 2024, 39(9): 311-318. doi: 10.3866/PKU.DXHX202306035
Yukun Xing , Xiaoyu Xie , Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006
Jijun Sun , Qianlang Wang , Qian Chen , Quanqin Zhao , Shumei Zhai . The Antibiotic Legion’s Manifesto to Human Allies. University Chemistry, 2025, 40(4): 307-321. doi: 10.12461/PKU.DXHX202405206
B:a.PVP-Cu NCs, b.PVP, c.AA; c(PVP-Cu NCs)=0.9 mmol/L, c(PVP)=c(AA)=100 μmol/L
A:c(Que)=0, 0.1, 0.3, 0.5, 0.7, 0.9, 3, 5, 15, 20, 30, 40, 50, 60, 70, 80, 90 and 100 μmol/L
c(PVP-Cu NCs)=0.45 mmol/L; c(Test object)=c(disruptors)=100 μmol/L