Citation: ZHANG Shen, GUO Yuyu. One-Pot Synthesis of Fluorescent Polyvinyl Pyrrolidone-Stabilized Cu Nanoclusters for the Determination of Quercetin[J]. Chinese Journal of Applied Chemistry, ;2020, 37(9): 1069-1075. doi: 10.11944/j.issn.1000-0518.2020.09.200045 shu

One-Pot Synthesis of Fluorescent Polyvinyl Pyrrolidone-Stabilized Cu Nanoclusters for the Determination of Quercetin

  • Corresponding author: GUO Yuyu, guoyuyu@tyut.edu.cn
  • Received Date: 17 February 2020
    Revised Date: 23 April 2020
    Accepted Date: 3 June 2020

    Fund Project: Supported by the Shanxi Provincial Applied Fundamental Research Fund Project(No.201801D121257)Shanxi Provincial Applied Fundamental Research Fund Project 201801D121257

Figures(6)

  • As an effective way to detect quercetin, it is important to synthesize fluorescent probe with excellent performance by a simple method. In this work, a facile one-pot approach has been developed to prepare blue-emitting Cu nanoclusters (NCs) using ascorbic acid as a reducing agent and polyvinyl pyrrolidone (PVP) as a capping agent. The PVP-stabilized PVP-Cu NCs display good dispersion, high stability and strong fluorescence. It exhibits good water solubility, excellent photostability and high stability toward high concentration of sodium chloride. The optical performance and structure of PVP-Cu NCs were characterized by ultraviolet-visible (UV-Vis) absorption spectroscopy, fluorescence spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The characterization results show that PVP-Cu NCs have a strong symmetric emission at 429 nm with a maximum excitation at 366 nm. TEM analysis shows that the average diameter of PVP-Cu NCs is 2.0 nm. We construct a fluorescent sensor for the detection of quercetin on the basis of the quenching effect of quercetin on the fluorescence of PVP-Cu NCs. The experimental results show that the quercetin sensing system has a linear range of 0.1~0.9 μmol/L and 15~60 μmol/L with a low detection limit (S/N=3) of 0.053 μmol/L. The sensor has high sensitivity and good selectivity for the detection of quercetin, and can be applied for quercetin detection in real samples.
  • 加载中
    1. [1]

      Borska S, Chmielewska M, Wysocka T. In Vitro Effect of Quercetin on Human Gastric Carcinoma:Targeting Cancer Cells Death and MDR[J]. Food Chem Toxicol, 2012,50(9):3375-3383. doi: 10.1016/j.fct.2012.06.035

    2. [2]

      Rogerio A P, Dora C L, Andrade E L. Anti-inflammatory Effect of Quercetin-loaded Microemulsion in the Airways Allergic Inflammatory Model in Mice[J]. Pharmacol Res, 2010,61(4):288-397. doi: 10.1016/j.phrs.2009.10.005

    3. [3]

      Ferrer E G, Salinas M V, Correa M J. Synthesis, Characterization, Antitumoral and Osteogenic Activities of Quercetin Vanadyl(IV) Complexes[J]. J Biol Inorg Chem, 2006,11(6):791-801. doi: 10.1007/s00775-006-0122-9

    4. [4]

      Kim Y H, Lee D H, Jeong J H. Quercetin Augments TRAIL-Induced Apoptotic Death:Involvement of the ERK Signal Transduction Pathway[J]. Biochem Pharmacol, 2008,75(10):1946-1958. doi: 10.1016/j.bcp.2008.02.016

    5. [5]

      Gil J J, Langner E, Wertel I. Temozolomide, Quercetin and Cell Death in the MOGGCCM Astrocytoma Cell Line[J]. Chem Biol Interact, 2010,188(1):190-203. doi: 10.1016/j.cbi.2010.07.015

    6. [6]

      Pejic N, Kuntic V, Vujic Z. Direct Spectrophotometric Determination of Quercetin in the Presence of Ascorbic Acid[J]. Il Farmaco, 2004,59(1):21-24. doi: 10.1016/j.farmac.2003.07.013

    7. [7]

      Nugroho A, Lim S C, Lee C M. Simultaneous Quantitative Determination and Validation of Quercetin Glycosides with Peroxynitrite-Scavenging Effects from Saussurea grandifolia[J]. J Pharm Biomed Anal, 2001,61(5):247-251.  

    8. [8]

      Yu J B, Jin H, Gui R J. A Facile Strategy for Ratiometric Electrochemical Sensing of Quercetin in Electrolyte Solution Directly Using Bare Glassy Carbon Electrode[J]. J Electroanal Chem, 2017,795:97-102. doi: 10.1016/j.jelechem.2017.04.053

    9. [9]

      Wu D D, Chen Z. ZnS Quantum Dots-Based Fluorescence Spectroscopic Technique for the Detection of Quercetin[J]. Luminescence, 2014,29(4):307-313. doi: 10.1002/bio.2545

    10. [10]

      Dwiecki K, Kwiatkowska P, Siger A. Determination of Quercetin in Onion (Allium cepa) Using β-Cyclodextrin-Coated CdSe/ZnS Quantum Dot-Based Fluorescence Spectroscopic Technique[J]. Int J Food Sci Tech, 2015,50(6):1366-1373. doi: 10.1111/ijfs.12772

    11. [11]

      Gao Y F, Jin X, Kong F Y. One-pot Green and Simple Synthesis of Actinian Nickel-Doped Carbon Nanoflowers for Ultrasensitive Sensing of Quercetin[J]. Analyst, 2019,144(24):7283-7289. doi: 10.1039/C9AN01907C

    12. [12]

      Aparna R S, Devi J S A, Anjana R R. Reversible Fluorescence Modulation of BSA Stabilised Copper Nanoclusters for the Selective Detection of Protamine and Heparin[J]. Analyst, 2019,144(5):1799-1808. doi: 10.1039/C8AN01703D

    13. [13]

      Aparna R S, Syamchand S S, George S. Tannic Acid Stabilised Copper Nanocluster Developed Through Microwave Mediated Synthesis as a Fluorescent Probe for the Turn On Detection of Dopamine[J]. J Clust Sci, 2017,28(4):2223-2238. doi: 10.1007/s10876-017-1221-1

    14. [14]

      Bhamore J R, Jha S, Mungara A K. One-step Green Synthetic Approach for the Preparation of Multicolor Emittingcopper Nanoclusters and Their Applications in Chemical Species Sensing and Bioimaging[J]. Biosens Bioelectron, 2016,80:243-248. doi: 10.1016/j.bios.2016.01.066

    15. [15]

      Ai L, Jiang W R, Liu Z Y. Engineering a Red Emission of Copper Nanocluster Self-assembly Architectures by Employing Aromatic Thiols as Capping Ligands[J]. Nanoscale, 2017,9:12618-12627. doi: 10.1039/C7NR03985A

    16. [16]

      Basu K, Gayen K, Mitra T. Different Color Emissive Copper Nanoclusters and Cancer Cell Imaging[J]. ChemNanoMat, 2017,3:808-814. doi: 10.1002/cnma.201700162

    17. [17]

      Bagheri H, Afkhami A, Khoshsafar H. Protein Capped Cu Nanoclusters-SWCNT Nanocomposite as a Novel Candidate of High Performance Platform for Organophosphates Enzymeless Biosensor[J]. Biosens Bioelectron, 2017,89:829-836. doi: 10.1016/j.bios.2016.10.003

    18. [18]

      Baig M M F, Chen C T, Chen Y C. Photoluminescence Determination of Aluminum Using Glutathione-Capped Gold Nanoclusters[J]. Anal Lett, 2016,49(14):2246-2258. doi: 10.1080/00032719.2016.1143477

    19. [19]

      Chen P C, Ma J Y, Chen L Y. Photoluminescent AuCu Bimetallic Nanoclusters as pH Sensors and Catalysts[J]. Nanoscale, 2014,6(7):3503-3507. doi: 10.1039/c3nr06123j

    20. [20]

      Lu D T, Chen Z, Li Y F. Determination of Mercury(II) by Fluorescence Using Deoxyribonucleic Acid Stabilized Silver Nanoclusters[J]. Anal Lett, 2014,48(2):281-290.  

  • 加载中
    1. [1]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    2. [2]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    3. [3]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    4. [4]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    5. [5]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    6. [6]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    7. [7]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    8. [8]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    9. [9]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    10. [10]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    11. [11]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    12. [12]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    13. [13]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    14. [14]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    15. [15]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    16. [16]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    17. [17]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    18. [18]

      Qin Li Ziyao Jia Ye Chen Mingze Ma Lin Li Tao Huang . A Journey into the Enigmatic World of Pickering Emulsion: A Chemical Science Popularization Experiment. University Chemistry, 2024, 39(9): 311-318. doi: 10.3866/PKU.DXHX202306035

    19. [19]

      Yukun Xing Xiaoyu Xie Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006

    20. [20]

      Jijun Sun Qianlang Wang Qian Chen Quanqin Zhao Shumei Zhai . The Antibiotic Legion’s Manifesto to Human Allies. University Chemistry, 2025, 40(4): 307-321. doi: 10.12461/PKU.DXHX202405206

Metrics
  • PDF Downloads(6)
  • Abstract views(1676)
  • HTML views(631)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return