Citation: GAO Ming, ZHAO Kaidong, LIU Xiangyong, JIN Yuanzhe. Preparation of Molybdenum Disulfide Nanoparticles and the Cytoprotection on Cardiac Myocytes[J]. Chinese Journal of Applied Chemistry, ;2020, 37(9): 1010-1021. doi: 10.11944/j.issn.1000-0518.2020.09.200042 shu

Preparation of Molybdenum Disulfide Nanoparticles and the Cytoprotection on Cardiac Myocytes

  • Corresponding author: JIN Yuanzhe, yzjin@cmu.edu.cn
  • Received Date: 17 February 2020
    Revised Date: 23 March 2020
    Accepted Date: 28 April 2020

    Fund Project: National Natural Science Foundation of China No.21575071National Natural Science Foundation of China No.21874079Supported by the National Natural Science Foundation of China(No.21575071, No.21874079)

Figures(7)

  • Cardiovascular diseases currently dominate the cause of death worldwide. Oxidative stress injury is one of the important pathogenesis of cardiovascular diseases. The purpose of this study is to investigate the antioxidative protection effect of molybdenum disulfide (MoS2) nanoparticles on cardiomyocytes under oxidative stress injury. We synthesized MoS2 nanoparticles with antioxidant-like enzyme activity by a one-step hydrothermal method. MTT, intracellular apoptosis, intracellular reactive oxygen species (ROS) detection, and Western Blot experiments confirm that MoS2 nanoparticles (100 μg/mL) can protect H9c2 cardiomyocytes from oxidative stress injury induced by hydrogen peroxide (H2O2). At the same time, it also promotes the proliferation of H9c2 cardiomyocytes. This study shows that MoS2 nanoparticles can be used to construct antioxidant defense against cardiovascular diseases caused by oxidative stress injury, and provide experimental data and theoretical basis for the development of nanomedicine in the resistance to myocardial oxidative damage.
  • 加载中
    1. [1]

      Bejarano J, Navarro-Marquez M, Morales-Zavala F. Nanoparticles for Diagnosis and Therapy of Atherosclerosis and Myocardial Infarction:Evolution Toward Prospective Theranostic Approaches[J]. Theranostics, 2018,8(17):4710-4732. doi: 10.7150/thno.26284

    2. [2]

      Ortgies D H, García-Villalón Á L, Granado M. Infrared Fluorescence Imaging of Infarcted Hearts with Ag2S Nanodots[J]. Nano Res, 2019,12(4):749-757. doi: 10.1007/s12274-019-2280-4

    3. [3]

      Vernekar AA, Sinha D, Srivastava S. An Antioxidant Nanozyme that Uncovers the Cytoprotective Potential of Vanadia Nanowires[J]. Nat Commun, 2014,55301. doi: 10.1038/ncomms6301

    4. [4]

      Ge C, Fang G, Shen X. Facet Energy Versus Enzyme-Like Activities:The Unexpected Protection of Palladium Nanocrystals Against Oxidative Damage[J]. ACS Nano, 2016,10(11):10436-10445. doi: 10.1021/acsnano.6b06297

    5. [5]

      Huang Y, Liu Z, Liu C. Self-assembly of Multi-nanozymes to Mimic an Intracellular Antioxidant Defense System[J]. Angew Chem Int Ed, 2016,55(23):6646-6650. doi: 10.1002/anie.201600868

    6. [6]

      Singh N, Savanur M A, Srivastava S. A Manganese Oxide Nanozyme Prevents the Oxidative Damage of Biomolecules Without Affecting the Endogenous Antioxidant System[J]. Nanoscale, 2019,11(9):3855-3863. doi: 10.1039/C8NR09397K

    7. [7]

      Hou C, Luo Q, Liu J. Construction of GPx Active Centers on Natural Protein Nanodisk/Nanotube:A New Way to Develop Artificial Nanoenzyme[J]. ACS Nano, 2012,6(10):8692-8701. doi: 10.1021/nn302270b

    8. [8]

      Asati A, Santra S, Kaittanis C. Oxidase-like Activity of Polymer-coated Cerium Oxide Nanoparticles[J]. Angew Chem Int Ed Engl, 2009,48(13):2308-2312. doi: 10.1002/anie.200805279

    9. [9]

      Korsvik C, Patil S, Seal S. Superoxide Dismutase Mimetic Properties Exhibited by Vacancy Engineered Ceria Nanoparticles[J]. Chem Commun, 2007,10:1056-1058.  

    10. [10]

      Wu J, Wang X, Wang Q. Nanomaterials with Enzyme-Like Characteristics(Nanozymes):Next-Generation Artificial Enzymes(II)[J]. Chem Soc Rev, 2019,48(4):1004-1076. doi: 10.1039/C8CS00457A

    11. [11]

      Adini A R, Redlich M, Tenne R. Medical Applications of Inorganic Fullerene-Like Nanoparticles[J]. J Mater Chem, 2011,21(39):15121-15131. doi: 10.1039/c1jm11799h

    12. [12]

      Liu T, Shi S, Liang C. Iron Oxide Decorated MoS2 Nanosheets with Double PEGylation for Chelator-free Radiolabeling and Multimodal Imaging Guided Photothermal Therapy[J]. ACS Nano, 2015,9(1):950-960. doi: 10.1021/nn506757x

    13. [13]

      Pardo M, Shuster-Meiseles T, Levin-Zaidman S. Low Cytotoxicity of Inorganic Nanotubes and Fullerene-like Nanostructures in Human Bronchial Epithelial Cells:Relation to Inflammatory Gene Induction and Antioxidant Response[J]. Environ Sci Technol, 2014,48(6):3457-3466. doi: 10.1021/es500065z

    14. [14]

      Hao J, Song G, Liu T. In Vivo Long-Term Biodistribution, Excretion, and Toxicology of PEGylated Transition-Metal Dichalcogenides MS2(M=Mo, W, Ti) Nanosheets[J]. Adv Sci(Weinh), 2017,4(1)1600160.  

    15. [15]

      Chen T, Zou H, Wu X. Nanozymatic Antioxidant System Based on MoS2 Nanosheets[J]. ACS Appl Mater Interfaces, 2018,10(15):12453-12462. doi: 10.1021/acsami.8b01245

    16. [16]

      Fan K, Xi J, Fan L. In Vivo Guiding Nitrogen-Doped Carbon Nanozyme for Tumor Catalytic Therapy[J]. Nat Commun, 2018,9(1)1440.  

    17. [17]

      Sun H, Zhao A, Gao N. Deciphering a Nanocarbon-Based Artificial Peroxidase:Chemical Identification of the Catalytically Active and Substrate-Binding Sites on Graphene Quantum Dots[J]. Angew Chem Int Ed, 2015,54(24):7176-7180. doi: 10.1002/anie.201500626

    18. [18]

      Hu M, Korschelt K, Daniel P. Fibrous Nanozyme Dressings with Catalase-Like Activity for H2O2 Reduction to Promote Wound Healing[J]. ACS Appl Mater Interfaces, 2017,9(43):38024-38031. doi: 10.1021/acsami.7b12212

    19. [19]

      Zeng C, Feng Y, Wang W. The Size-Dependent Apoptotic Effect of Titanium Dioxide Nanoparticles on Endothelial Cells by the Intracellular Pathway[J]. Environ Toxicol, 2018,33(12):1221-1228. doi: 10.1002/tox.22628

    20. [20]

      Chang K, Chen W. L-Cysteine-assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries[J]. ACS Nano, 2011,5(6):4720-4728. doi: 10.1021/nn200659w

    21. [21]

      Wang Y, Ni Y. Molybdenum Disulfide Quantum Dots as a Photoluminescence Sensing Platform for 2, 4, 6-Trinitrophenol Detection[J]. Anal Chem, 2014,86(15):7463-7470. doi: 10.1021/ac5012014

    22. [22]

      Huang H, Du C, Shi H. Water-Soluble Monolayer Molybdenum Disulfide Quantum Dots with Upconversion Fluorescence[J]. Part Part Syst Charact, 2015,32(1):72-79. doi: 10.1002/ppsc.201400101

    23. [23]

      Carillon J, Rouanet J, Cristol J. Superoxide Dismutase Administration, A Potential Therapy Against Oxidative Stress Related Diseases:Several Routes of Supplementation and Proposal of an Original Mechanism of Action[J]. Pharm Res, 2013,30(11):2718-2728. doi: 10.1007/s11095-013-1113-5

    24. [24]

      Sun H, Gao N, Dong K. Graphene Quantum Dots-Band-Aids Used for Wound Disinfection[J]. ACS Nano, 2014,8(6):6202-6210. doi: 10.1021/nn501640q

    25. [25]

      Ślesak I, Ślesak H, Zimak-Piekarczyk P. Enzymatic Antioxidant Systems in Early Anaerobes:Theoretical Considerations[J]. Astrobiology, 2016,16(5):348-358. doi: 10.1089/ast.2015.1328

    26. [26]

      Wu M, Lin Z, Wolfbeis O S. Determination of the Activity of Catalase Using a Europium(III)-Tetracycline-derived Fluorescent Substrate[J]. Anal Biochem, 2003,320(1):129-135.  

    27. [27]

      Jiang D, Ni D, Rosenkrans Z T. Nanozyme:New Horizons for Responsive Biomedical Applications[J]. Chem Soc Rev, 2019,48(14):3683-3704. doi: 10.1039/C8CS00718G

    28. [28]

      Wei H, Wang E. Nanomaterials with Enzyme-like Characteristics(Nanozymes):Next-Generation Artificial Enzymes[J]. Chem Soc Rev, 2013,42(14):6060-6093. doi: 10.1039/c3cs35486e

    29. [29]

      Huang X, Zhuang J, Teng X. The Promotion of Human Malignant Melanoma Growth by Mesoporous Silica Nanoparticles Through Decreased Reactive Oxygen Species[J]. Biomaterials, 2010,31(24):6142-6153. doi: 10.1016/j.biomaterials.2010.04.055

    30. [30]

      Kuo J S, Jan M, Lin Y. Interactions Between U-937 Human Macrophages and Poly(propyleneimine) Dendrimers[J]. J Control Release, 2007,120(1-2):51-59. doi: 10.1016/j.jconrel.2007.03.019

    31. [31]

      Chen W, Hsieh S, Chiu C. Molecular Identification for Epigallocatechin-3-gallate-Mediated Antioxidant Intervention on the H2O2-Induced Oxidative Stress in H9c2 Rat Cardiomyoblasts[J]. J Biomed Sci, 2014,21(1)56.  

    32. [32]

      Hsu H, Chen C, Chiang C. Eicosapentaenoic Acid Attenuated Oxidative Stress-Induced Cardiomyoblast Apoptosis by Activating Adaptive Autophagy[J]. Eur J Nutr, 2014,53(2):541-547.  

    33. [33]

      Qian J, Jiang F, Wang B. Ophiopogonin D prevents H2O2-induced Injury in Primary Human Umbilical Vein Endothelial Cells[J]. J Ethnopharmacol, 2010,128(2):438-445. doi: 10.1016/j.jep.2010.01.031

    34. [34]

      Leber B, Geng F, Kale J. Drugs Targeting Bcl-2 Family Members as an Emerging Strategy in Cancer[J]. Expert Rev Mol Med, 2010,12.  

    35. [35]

      Lin H, Chen J, Huang C. Apoptotic Effect of 3, 4-Dihydroxybenzoic Acid on Human Gastric Carcinoma Cells Involving JNK/p38 MAPK Signaling Activation[J]. Int J Cancer, 2007,120(11):2306-2316. doi: 10.1002/ijc.22571

    36. [36]

      Shihab F S, Andoh T F, Tanner A M. Expression of Apoptosis Regulatory Genes in Chronic Cyclosporine Nephrotoxicity Favors Apoptosis[J]. Kidney Int, 1999,56(6):2147-2159. doi: 10.1046/j.1523-1755.1999.00794.x

  • 加载中
    1. [1]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    2. [2]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    3. [3]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    4. [4]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    5. [5]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    6. [6]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    7. [7]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    8. [8]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    9. [9]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    10. [10]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    11. [11]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    12. [12]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    13. [13]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    14. [14]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    15. [15]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    16. [16]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    17. [17]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    18. [18]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    19. [19]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    20. [20]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

Metrics
  • PDF Downloads(4)
  • Abstract views(1134)
  • HTML views(301)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return