Citation: XIAO Haimei, CAI Lei, ZHANG Zhaohui, CHEN Shan, ZHOU Shu, FU Jinli. Preparation of Ion-Imprinted Polymers Based on Magnetic Graphene Oxide/MIL-101 (Cr) and Selective Adsorption of Cu(Ⅱ) and Pb(Ⅱ)[J]. Chinese Journal of Applied Chemistry, ;2020, 37(9): 1076-1086. doi: 10.11944/j.issn.1000-0518.2020.09.200028 shu

Preparation of Ion-Imprinted Polymers Based on Magnetic Graphene Oxide/MIL-101 (Cr) and Selective Adsorption of Cu(Ⅱ) and Pb(Ⅱ)

  • Corresponding author: ZHANG Zhaohui, zhaohuizhang77@163.com
  • Received Date: 20 January 2020
    Revised Date: 2 April 2020
    Accepted Date: 11 May 2020

    Fund Project: Hunan Province Graduate Student Scientific Research Innovation Project CX2018B705National Natural Science Foundation of China 21565014Hunan Province Manganese Zinc and Vanadium Industry Technology Collaborative Innovation Center Research and Innovation Project 2018mzvg006Supported by the National Natural Science Foundation of China(No.21767011, No.21565014), the Hunan Province Graduate Student Scientific Research Innovation Project(No.CX2018B705), and the Hunan Province Manganese Zinc and Vanadium Industry Technology Collaborative Innovation Center Research and Innovation Project(No.2018mzvg006)National Natural Science Foundation of China 21767011

Figures(9)

  • A type of magnetic ion-imprinted polymer based on magnetic graphene oxide/MIL-101(Cr) was synthesized with surface imprinting technology using magnetic graphene oxide/MIL-101(Cr) composite as the supporting material, Cu(Ⅱ), Pb(Ⅱ) as the templates, and dopamine as the functional monomer. Fourier-transform infrared spectroscopy, scanning electron microscopy, and vibrating sample magnetometry were used to characterize the morphology, particle size, and magnetic properties of the magnetic ion-imprinted polymer. The adsorption kinetics, isothermal adsorption performance and adsorption selectivity of the magnetic ion-imprinted polymer toward Cu(Ⅱ) and Pb(Ⅱ) were investigated in details. The results show that the magnetic ion-imprinted polymer has a superior adsorption performance toward Cu(Ⅱ) and Pb(Ⅱ) with the maximum adsorption capacity of 144.92 and 322.58 mg/g, respectively. The magnetic solid-phase extraction conditions were optimized in details. The magnetic ion-imprinted polymer was successfully used for the separation and detection of trace amounts of Cu(Ⅱ) and Pb(Ⅱ) in water samples. The recoveries of Cu(Ⅱ) and Pb(Ⅱ) are 81.99%~89.91% and 81.24%~95.15%, respectively.
  • 加载中
    1. [1]

      Gumpu M B, Sethuraman S, Krishnan U M. A Review on Detection of Heavy Metal Ions in Water:An Electrochemical Approach[J]. Sens Actuators B-Chem, 2015,213(1):515-533.  

    2. [2]

      Amiri O, Hosseinpour-Mashkani S M, Rad M M. Simple and Surfactant Free Synthesis and Characterization of Cds/Zns Core Shell Nanoparticles and This Application in the Removal of Heavy Metals from Aqueous Solution[J]. RSC Adv, 2014,7(4):10990-10996.

    3. [3]

      Verma R, Gupta B D. Detection of Heavy Metal Ions in Contaminated Water by Surface Plasmon Resonance Based Optical Fibre Sensor Using Conducting Polymer and Chitosan[J]. Food Chem, 2015,166(2):568-575.  

    4. [4]

      LI Huidong, LI Xiaolei, HUO Kaili. Study on Removal of Lead from Wastewater by Enhanced Ultrasonic Biosorption Agent[J]. Technol Water Treat, 2018,316(5):53-56.  

    5. [5]

      HALDAN Maimaiti, ZHANG Yunfei, GUNISAKEZI Yisilamu. Preparation of Cellulose-Based Magnetic Adsorbent and Its Metal Ion Adsorption Performance[J]. Chinese J Funct Mater, 2018,2(49):2174-2182.  

    6. [6]

      HUANG Xueqin, LI Tianyong, GUO Shi. Adsorption and Mechanism of Rape Straw on Pb(Ⅱ) in Multiple Ionized Water System[J]. China Environ Sci, 2017,37(9):2263-3370.  

    7. [7]

      ZHANG Lizhi, HE Li, HE Xu. Study on Adsorption of Tartary Buckwheat Tea on Lead, Copper, Cadmium, Zinc and Chromium Ions in Aqueous Solution[J]. Spectrosc Spectr Anal, 2019,39(1):275-283.  

    8. [8]

      XU Sheng, LI Lingli, CAO Meng. Construction of "Skeleton-supported" Type PVA/ZnO Composite Materials and Lead Ion Adsorption[J]. CIESC J, 2019,70(S1):130-140.  

    9. [9]

      LIU Jianglong, GUO Yan, HE Xiaoshan. Preparation of Silanized Red Mud and Analysis of Its Adsorption Performance on Lead Ions in Water[J]. Environ Eng, 2019,37(11):36-44.  

    10. [10]

      Zhou T Y, Ding L, Chen G B. Recent Advances and Trends of Molecularly Imprinted Polymers for Specific Recognition in Aqueous Matrix:Preparation and Application in Sample Pretreatment[J]. TrAC Trends Anal Chem, 2019,114:11-28. doi: 10.1016/j.trac.2019.02.028

    11. [11]

      Nishide H, Deguchi J, Tsuchida E. Adsorption of Metal Ions on Crosslinked Poly(4-Vinylpyridine) Resins Prepared with a Metal Ion as Template[J]. J Polym Sci Part A:Polym Chem, 1976,15(12):3023-3029.  

    12. [12]

      YIN Yuli, LONG Fang, RAO Wei. Preparation and Adsorption Properties of Novel Magnetic Nonylphenol Molecularly Imprinted Nanocomposite Material Based on Multiwalled Carbon Nanotubes[J]. Chinese J Appl Chem, 2015,32(4):472-480.  

    13. [13]

      CHEN Xin, YANG Zhaoxia, ZHANG Zhaohui. Preparation and Application of Lead Imprinted Polymer on Surface of Magnetic Carbon Nanotubes[J]. Chinese J Anal Chem, 2013,41(9):1406-1412.  

    14. [14]

      Zhou J J, Wang Y F, Mang Y. Surface Molecularly Imprinted Thermo-Sensitive Polymers Based on Light-Weight Hollow Magnetic Microspheres for Specific Recognition of BSA[J]. Appl Surf Sci, 2019,486:265-273. doi: 10.1016/j.apsusc.2019.04.159

    15. [15]

      Yan L, Wang J, Lv P. A Facile Synthesis of Novel Three-Dimensional Magnetic Imprinted Polymers for Rapid Extraction of Bovine Serum Albumin in Bovine Calf Serum[J]. Anal Bioanal Chem, 2017,409(13):3453-3463. doi: 10.1007/s00216-017-0283-0

    16. [16]

      Gatabi J, Sarrafi Y, Lakouraj M M. Facile and Efficient Removal of Pb(II) from Aqueous Solution by Chitosan-Lead Ion Imprinted Polymer Network[J]. Chemosphere, 2020,240124772. doi: 10.1016/j.chemosphere.2019.124772

    17. [17]

      Chen C, Feng N, Guo Q. Template-directed Fabrication of MIL-101(Cr)/Mesoporous Silica Composite:Layer-Packed Structure and Enhanced Performance for CO2 Capture[J]. J Colloid Interface Sci, 2017,513:891-902.  

    18. [18]

      Ferey G, Mellot-Draznieks C, Serre C. A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area[J]. Science, 2005,309(5743):2040-2042. doi: 10.1126/science.1116275

    19. [19]

      He X, Zhou Y, Yang W. Microwave Assisted Magnetic Solid Phase Extraction Using a Novel Amino-Functionalized Magnetic Framework Composite of Type Fe3O4-NH2@MIL-101(Cr) for the Determination of Organochlorine Pesticides in Soil Samples[J]. Talanta, 2019,196:572-578. doi: 10.1016/j.talanta.2018.12.019

    20. [20]

      Sarker M, Sung J Y, Jhung S H. Adsorptive Removal of Anti-inflammatory Drugs from Water Using Graphene Oxide/Metal-Organic Framework Composites[J]. Chem Eng J, 2018,335:74-81. doi: 10.1016/j.cej.2017.10.138

    21. [21]

      Qasem N A A, Qadir N U, Ben-Mansour R. Synthesis, Characterization, and CO2, Breakthrough Adsorption of a Novel MWCNT/MIL-101(Cr) Composite[J]. J CO2 Util, 2017,22:238-249. doi: 10.1016/j.jcou.2017.10.015

    22. [22]

      Liang L, Wang X, Sun Y. Magnetic Solid-Phase Extraction of Triazine Herbicides from Rice Using Metal-Organic Framework MIL-101(Cr) Functionalized Magnetic Particles[J]. Talanta, 2018,179:512-519. doi: 10.1016/j.talanta.2017.11.017

    23. [23]

      Shafiei M, Alivand M S, Rashidi A. Synthesis and Adsorption Performance of a Modified Micro-mesoporous MIL-101(Cr) for VOCs Removal at Ambient Conditions[J]. Chem Eng J, 2018,341:164-174. doi: 10.1016/j.cej.2018.02.027

    24. [24]

      Zheng Y, Chu F C, Zhang B. Ultrahigh Adsorption Capacities of Carbon Tetrachloride on MIL-101 and MIL-101/Graphene Oxide Composites[J]. Micropor Mesopor Mater, 2018,263:71-76. doi: 10.1016/j.micromeso.2017.12.007

    25. [25]

      Jin J H, Yang Z H, Xiong W P. Cu and Co Nanoparticles Co-doped MIL-101 as a Novel Adsorbent for Efficient Removal of Tetracycline from Aqueous Solutions[J]. Sci Total Environ, 2018,650(1):408-418.  

    26. [26]

      Lim C R, Lin S, Yun Y S. Highly Efficient and Acid-Resistant Metal-Organic Frameworks of MIL-101(Cr)-NH2 for Pd(II) and Pt(IV) Recovery from Acidic Solutions:Adsorption Experiments, Spectroscopic Analyses, and Theoretical Computations[J]. J Hazard Mat, 2020. doi: 10.1016/j.jhazmat.2019.121689

    27. [27]

      Thi M T H, Thi T P T, Thi L H P. Comparative Study of Pb(II) Adsorption onto MIL 101 and Fe-MIL-101 from Aqueous Solutions[J]. J Environ Chem Eng, 2018,6(4):4093-4102.  

    28. [28]

      Jia X, Zhao P, Ye X. A Novel Metal-Organic Framework Composite MIL-101(Cr)@GO as an Efficient Sorbent in Dispersive Micro-solid Phase Extraction Coupling with UHPLC-MS/MS for the Determination of Sulfonamides in Milk Samples[J]. Talanta, 2016,169:227-238.  

    29. [29]

      Zhang W Y, Yun M Y, Yu Z L. A Novel Cu(II) Ion-Imprinted Alginate-Chitosan Complex Adsorbent for Selective Separation of Cu(II) from Aqueous Solution[J]. Polym Bull, 2018,76(4):1861-1876.  

    30. [30]

      Cao Y, Li J Y, Liu H B. Preparation and Characterisation of a Novel Copper-imprinted Polymer Based on β-Cyclodextrin Copolymers for Celective Determination of Cu2+ Ions[J]. Polym Int, 2018,1:5752-5772.  

    31. [31]

      Ren Z, Zhu X, Du J. Facile and Green Preparation of Novel Adsorption Materials by Combining Sol-Gel with Ion Imprinting Technology for Selective Removal of Cu(II) Ions from Aqueous Solution[J]. Appl Surf Sci, 2017,435:574-478.  

    32. [32]

      Fang P, Xia W, Zhou Y. Ion-imprinted Mesoporous Silica/Magnetic Graphene Oxide Composites Functionalized with Schiff-base for Selective Cu(II) Capture and Simultaneously Being Transformed as a Robust Heterogeneous Catalyst[J]. Chem Eng J, 2020. doi: 10.1016/j.cej.2019.123847

    33. [33]

      He Y Y, Wu P, Xiao W. Efficient Removal of Pb(II) from Aqueous Solution by a Novel Ion Imprinted Magnetic Biosorbent:Adsorption Kinetics and Mechanisms[J]. PLoS One, 2019,14(3).  

    34. [34]

      Hung R, Shao N, Hou L. Fabrication of an Efficient Surface Ion-Imprinted Polymer Based on Sandwich-Like Graphene Oxide Composite Materials for Fast and Selective Removal of Lead Ions[J]. Colloids Surf A, 2019,566:218-228. doi: 10.1016/j.colsurfa.2019.01.011

    35. [35]

      Zhang Z, Zhang X, Niu D. Highly Efficient and Selective Removal of Trace Lead from Aqueous Solutions by Hollow Mesoporous Silica Loaded with Molecularly Imprinted Polymers[J]. J Hazard Mater, 2017,328:160-169. doi: 10.1016/j.jhazmat.2017.01.003

    36. [36]

      Chao Z, Tianjue H, Lin T. Highly Efficient Extraction of Lead Ions from Smelting Wastewater, Slag and Contaminated Soil by Two-Dimensional Montmorillonite-Based Surface Ion Imprinted Polymer Absorbent[J]. Chemosphere, 2018,209:246-257. doi: 10.1016/j.chemosphere.2018.06.105

  • 加载中
    1. [1]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    2. [2]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    3. [3]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    4. [4]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    10. [10]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    11. [11]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    12. [12]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    13. [13]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    14. [14]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    16. [16]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    17. [17]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    18. [18]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    19. [19]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    20. [20]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

Metrics
  • PDF Downloads(4)
  • Abstract views(678)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return