Citation: ZHANG Yanping, XUE Dongfeng. Influence of Sodium and Potassium Ions on Dihydrogen Phosphate Anion Raman Spectra[J]. Chinese Journal of Applied Chemistry, ;2020, 37(7): 823-829. doi: 10.11944/j.issn.1000-0518.2020.07.200079 shu

Influence of Sodium and Potassium Ions on Dihydrogen Phosphate Anion Raman Spectra

  • Corresponding author: XUE Dongfeng, dongfeng@ciac.ac.cn
  • Received Date: 19 March 2020
    Revised Date: 30 March 2020
    Accepted Date: 30 March 2020

    Fund Project: the National Natural Science Foundation of China 51832007Supported by the National Natural Science Foundation of China(No.51832007)

Figures(4)

  • Dihydrogen phosphate anion (H2PO4-) solution has important research value in biological buffering, molecular recognition and crystal growth. Taking KH2PO4 (KDP) and NaH2PO4 (NaDP) solutions as research objects, the influence of sodium and potassium ions on cluster aggregation and chemical bond vibration of H2PO4- solution was studied by in situ micro-Raman spectra. It was discussed that the difference of monovalent ions (K+, Na+) and the concentration of the solution played an important role in the Raman shift variation and nucleation induction time of H2PO4- vibration. The results show that the variation of Raman shift and the nucleation induction time increase with the increase of the solution-phase electronegativity of cations and the decrease of the concentration. In the Raman spectra, it is observed that the P(OH)2 and PO2 bands shift in the process of nucleation. It means that the cluster configuration is gradually stable and chemical bonding becomes clear, which deepens the understanding of solution structure and chemical bond during crystallization.
  • 加载中
    1. [1]

      Warwick C, Guerreiro A, Soares A. Sensing and Analysis of Soluble Phosphates in Environmental Samples:A Review[J]. Biosens Bioelectron, 2012,41(1):1-11.  

    2. [2]

      Kirby A J, Lima M F, da Silva D. Efficient Intramolecular General Acid Catalysis of Nucleophilic Attack on a Phosphodiester[J]. J Am Chem Soc, 2006,128(51):16944-16952.  

    3. [3]

      Wang X, Vorpagel E R, Yang X. Experimental and Theoretical Investigations of the Stability, Energetics, and Structures of H2PO4-, H2P2O72-, and H3P3O102- in the Gas Phase[J]. J Phys Chem A, 2001,105(45):10468-10474.  

    4. [4]

      Pluharová E, Oncák M, Seidel R. Transforming Anion Instability into Stability:Contrasting Photoionization of Three Protonation Forms of the Phosphate Ion Upon Moving into Water[J]. J Phys Chem B, 2012,116(44):13254-13264.  

    5. [5]

      Jiang L, Sun S, Heine N. Large Amplitude Motion in Cold Monohydrated Dihydrogen Phosphate Anions H2PO4-(H2O):Infrared Photodissociation Spectroscopy Combined with Ab Initio Molecular Dynamics Simulations[J]. Phys Chem Chem Phys, 2014,16(4):1314-1318.  

    6. [6]

      Sun S, Jiang L, Liu J. Microhydrated Dihydrogen Phosphate Clusters Probed by Gas Phase Vibrational Spectroscopy and First Principles Calculations[J]. Phys Chem Chem Phys, 2015,17(39):25714-25724.  

    7. [7]

      DONG Zhiyun, ZHANG Xiaoyu, ZENG Zhengquan. Anthracene-Benzimidazolium Based Fluorescent Chemosensor for Highly Selective Recogniton of H2PO4-[J]. Chinese J Appl Chem, 2020,37(1):80-87.  

    8. [8]

      Duchateau G, Feit M D, Demos S G. Strong Nonlinear Growth of Energy Coupling During Laser Irradiation of Transparent Dielectrics and Its Significance for Laser Induced Damage[J]. J Appl Phys, 2012,111(9)093106.  

    9. [9]

      Ren X, Xu D, Xue D. Crystal Growth of KDP, ADP, and KADP[J]. J Cryst Growth, 2008,310(7/8/9):2005-2009.  

    10. [10]

      Xu D, Xue D. Chemical Bond Analysis of the Crystal Growth of KDP and ADP[J]. J Cryst Growth, 2006,286(1):108-113.  

    11. [11]

      Sun C, Xue D. In Situ IR Spectral Observation of NH4H2PO4 Crystallization:Structural Identification of Nucleation and Crystal Growth[J]. J Phys Chem C, 2013,117(37):19146-19153.  

    12. [12]

      D'Amico F, Bencivenga F, Gessini A. Investigation of Acetic Acid Hydration Shell Formation through Raman Spectra Line-Shape Analysis[J]. J Phys Chem B, 2012,116(44):13219-13227.  

    13. [13]

      Sarmiento A, Maguregui M, Martinez(Arkarazo I. Raman Spectroscopy as a Tool to Diagnose the Impacts of Combustion and Greenhouse Acid Gases on Properties of Built Heritage[J]. J Raman Spectrosc:An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 2008,39(8):1042-1049.  

    14. [14]

      Ocenášek J, Novák P, Prušáková L. Kinetics of the Laser-Induced Solid Phase Crystallization of Amorphous Silicon-Time-Resolved Raman Spectroscopy and Computer Simulations[J]. Appl Surf Sci, 2017,392:867-871.  

    15. [15]

      Mošner P, Kupetska O, Koudelka L. Physical Properties and Structural Studies of Lithium Borophosphate Glasses Containing TeO2[J]. J Solid State Chem, 2019,270:547-552.  

    16. [16]

      ZHOU Kai, WENG Ying, HOU Qingqing. Preparation, Crystal Structure and Solubility of Organic Salt Hydrate of Berberine-Genistein[J]. Chinese J Appl Chem, 2019,36(2):230-235.  

    17. [17]

      ZHONG Zhenxing, LIU Guilan, LI Yonghai. Effects of 1, 2-Butanediol Comonomer on the Crystallization Behavior and Mechanical Properties of Poly(ethylene terephthalate)[J]. Chinese J Appl Chem, 2019,36(2):170-175.  

    18. [18]

      YE Shaofeng, LIU Wenxian, SHA Dongyong. Two-Dimensional Materials Assembled Bubble Foam-like Hybrid for Supercapacitor Applications[J]. Chinese J Appl Chem, 2018,35(3):351-355.  

    19. [19]

      XU Xiaolong, HAO Zhendong, LI Haoqiang. Modification of LiFePO4 Based on Zeolite Imidazolate Framework-8[J]. Chinese J Appl Chem, 2018,35(8):939-945.  

    20. [20]

      Lu G, Xia H, Sun D. Cluster Formation in Solid-Liquid Interface Boundary Layers of KDP Studied by Raman Spectroscopy[J]. Phys Status Solidi A, 2001,188(3):1071-1076.  

    21. [21]

      Syed K A, Pang S F, Zhang Y. Micro-Raman Observation on the H2PO4- Association Structures in a Supersaturated Droplet of Potassium Dihydrogen Phosphate (KH2PO4)[J]. J Chem Phys, 2013,138(2)024901.  

    22. [22]

      Lee S, Wi H S, Jo W. Multiple Pathways of Crystal Nucleation in an Extremely Supersaturated Aqueous Potassium Dihydrogen Phosphate (KDP) Solution Droplet[J]. Proc Natl Acad Sci USA, 2016,113(48):13618-13623.  

    23. [23]

      Rudolph W W. Raman- and Infrared-Spectroscopic Investigations of Dilute Aqueous Phosphoric Acid Solutions[J]. Dalton Trans, 2010,39(40):9642-9653.  

    24. [24]

      Sun C, Chen X, Xue D. Hydrogen Bonding Paradigm in the Formation of Crystalline KH2PO4 from Aqueous Solution[J]. Cryst Growth Des, 2017,17(6):3178-3184.  

    25. [25]

      Preston C M, Adams W. A Laser Raman Spectroscopic Study of Aqueous Orthophosphate Salts[J]. J Phys Chem, 1979,83(7):814-821.  

    26. [26]

      Crettez J M, Misset J P, Coquet E. Vibrations and Force Constants of the Hexagonal Lithium Iodate Crystal[J]. J Chem Phys, 1979,70(9):4194-4198.  

    27. [27]

      Coronel A C, Zinczuk J, Fernandez L E. An Experimental and Theoretical Vibrational Study of 3, 3, 6, 6-Tetramethyl-1, 2, 4, 5-Tetrathiane[J]. Vib Spectrosc, 2015,81:40-45.

    28. [28]

      Shaver J M, Christensen K A, Pezzuti J A. Structure of Dihydrogen Phosphate Ion Aggregates by Raman-Monitored Serial Dilution[J]. Appl Spectrosc, 1998,52(2):259-264.  

    29. [29]

      Cerreta M K, Berglund K A. The Structure of Aqueous Solutions of Some Dihydrogen Orthophosphates by Laser Raman Spectroscopy[J]. J Cryst Growth, 1987,84(4):577-588.  

    30. [30]

      Xue D, Wang H. In-Situ Micro-Spectroscopy Technique for Chemical Bonding During Nucleation:A Transition from Soft Bond to Stiff Bond[J]. Sci China Tech Sci, 202063. doi: 10.1007/s11431-020-1535-1

    31. [31]

      Ben Mabrouk K, Kauffmann T H, Aroui H. Raman Study of Cation Effect on Sulfate Vibration Modes in Solid State and in Aqueous Solutions[J]. J Raman Spectrosc, 2013,44(11):1603-1608.  

    32. [32]

      Li K, Li M, Xue D. Solution-Phase Electronegativity Scale:Insight into the Chemical Behaviors of Metal Ions in Solution[J]. J Phys Chem A, 2012,116(16):4192-4198.  

    33. [33]

      Li K, Xue D. Estimation of Electronegativity Values of Elements in Different Valence States[J]. J Phys Chem A, 2006,110(39):11332-11337.  

    34. [34]

      Rajbanshi A, Wan S, Custelcean R. Dihydrogen Phosphate Clusters:Trapping H2PO4- Tetramers and Hexamers in Urea-Functionalized Molecular Crystals[J]. Cryst Growth Des, 2013,13(5):2233-2237.  

  • 加载中
    1. [1]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    2. [2]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    3. [3]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    6. [6]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    7. [7]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    8. [8]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    9. [9]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    10. [10]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    11. [11]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    12. [12]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    13. [13]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    14. [14]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    15. [15]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    16. [16]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    17. [17]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    18. [18]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    19. [19]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    20. [20]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

Metrics
  • PDF Downloads(21)
  • Abstract views(1321)
  • HTML views(365)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return