Progress in Iron, Cobalt and Nickel-Based Metal Phosphide Nano-catalysts for Hydrogen Production under Alkaline Conditions
- Corresponding author: PENG Juan, pengjuan@nxu.edu.cn
Citation:
MENG Yang, YANG Chan, PENG Juan. Progress in Iron, Cobalt and Nickel-Based Metal Phosphide Nano-catalysts for Hydrogen Production under Alkaline Conditions[J]. Chinese Journal of Applied Chemistry,
;2020, 37(7): 733-745.
doi:
10.11944/j.issn.1000-0518.2020.07.200058
Dai D, Wei B, Li Y. Self-supported Hierarchical Fe(PO3)2@Cu3P Nanotube Arrays for Efficient Hydrogen Evolution in Alkaline Media[J]. J Alloys Comp, 2020,820(2):258-266.
Esmailzadeh S, Shahrabi T, Darband G B. Pulse Electrodeposition of Nickel Selenide Nanostructure as a Binder-Free and High-Efficient Catalyst for both Electrocatalytic Hydrogen and Oxygen Evolution Reactions in Alkaline Solution[J]. Electrochim Acta, 2020,334(5):131-140.
Liu H, Qian X, Niu Y. Hierarchical Ni-MoSex@CoSe2 Core-Shell Nanosphere as Highly Active Bifunctional Catalyst for Efficient Dye-Sensitized Solar Cell and Alkaline Hydrogen Evolution[J]. Chem Eng J, 2020,383(27):427-436.
Cheng H E, Li W L, Yang Z P. Enhancement of Hydrogen Evolution Reaction by Pt Nanopillar-Array Electrode in Alkaline Media and the Effect of Nanopillar Length on the Electrode Efficiency[J]. Int J Hydrogen Energy, 2019,44(57):30141-30150. doi: 10.1016/j.ijhydene.2019.09.188
Kim J, Kim H, Lee W J. Theoretical and Experimental Understanding of Hydrogen Evolution Reaction Kinetics in Alkaline Electrolytes with Pt-Based Core-Shell Nanocrystals[J]. J Am Chem Soc, 2019,141(45):18256-18263. doi: 10.1021/jacs.9b09229
Wang X, Liu R, Zhang Y. Hierarchical Ni3S2-NiOOH Hetero-Nanocomposite Grown on Nickel Foam as a Noble-Metal-Free Electrocatalyst for Hydrogen Evolution Reaction in Alkaline Electrolyte[J]. Appl Surf Sci, 2018,456(5):164-173.
Zhang L, Cong M, Wang Y. V4P6.98/VO(PO3)2 as an Efficient Non-noble Metal Catalyst for Electrochemical Hydrogen Evolution in Alkaline Electrolyte[J]. ChemElectroChem, 2019,6(5):1329-1332. doi: 10.1002/celc.201801637
Zhang Y, Wang Y, Han C. Tungsten-Coated Nano-Boron Carbide as a Non-noble Metal Bifunctional Electrocatalyst for Oxygen Evolution and Hydrogen Evolution Reactions in Alkaline Media[J]. Nanoscale, 2017,9(48):19176-19182. doi: 10.1039/C7NR08092A
Cai J, Song Y, Zang Y. N-Induced Lattice Contraction Generally Boosts the Hydrogen Evolution Catalysis of P-Rich Metal Phosphides[J]. Sci Adv, 2020,6(1):28252-28261.
PAN Zhiyu. Research Progress of Transition Metal-Based Electrocatalytic Hydrogen Evolution Materials[J]. Mod Chem Res, 2019,2(1841):143-144.
Yu H, Li J, Gao G. Metal-Organic Frameworks Derived Carbon-Incorporated Cobalt/Dicobalt Phosphide Microspheres as Mott-Schottky Electrocatalyst for Efficient and Stable Hydrogen Evolution Reaction in Wide-pH Environment[J]. J Colloid Interface Sci, 2020,565(23):513-522.
Du H, Kong R M, Guo X. Recent Progress in Transition Metal Phosphides with Enhanced Electrocatalysis for Hydrogen Evolution[J]. Nanoscale, 2018,10(46):21617-21624. doi: 10.1039/C8NR07891B
Lv Y, Wang X. Nonprecious Metal Phosphides as Catalysts for Hydrogen Evolution, Oxygen Reduction and Evolution Reactions[J]. Catal Sci Technol, 2017,7(17):3676-3691. doi: 10.1039/C7CY00715A
Callejas J F, Read C G, Roske C W. Synthesis, Characterization, and Properties of Metal Phosphide Catalysts for the Hydrogen-Evolution Reaction[J]. Chem Mater, 2016,28(17):6017-6044. doi: 10.1021/acs.chemmater.6b02148
Jiang P, Liu Q, Sun X. NiP2 Nanosheet Arrays Supported on Carbon Cloth:An Efficient 3D Hydrogen Evolution Cathode in both Acidic and Alkaline Solutions[J]. Nanoscale, 2014,6(22):13440-13445. doi: 10.1039/C4NR04866K
Zhang Y, Wang Y, Wang T. Heterostructure of 2D CoP Nanosheets/1D Carbon Nanotubes to Significantly Boost the Alkaline Hydrogen Evolution[J]. Adv Mater Interfaces, 2020,7(2):2571-2579.
CHEN Yaqiong, ZHANG Jinfeng, WAN Lei. Effect of Nickel Phosphide Nanoparticles Crystallization on Hydrogen Evolution Reaction Catalytic Performance[J]. Trans Nonferrous Met Soc China, 2017,27(2):369-376.
Zhang S, Xiong T, Tang X. Engineering Inner-Porous Cobalt Phosphide Nanowire Based on Controllable Phosphating for Efficient Hydrogen Evolution in Both Acidic and Alkaline Conditions[J]. Appl Surf Sci, 2019,481(15):1524-1531.
McEnaney J M, Crompton J C, Callejas J F. Amorphous Molybdenum Phosphide Nanoparticles for Electrocatalytic Hydrogen Evolution[J]. Chem Mater, 2014,26(16):4826-4831. doi: 10.1021/cm502035s
Popczun E J, McKone J R, Read C G. Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction[J]. J Am Chem Soc, 2013,135(25):9267-9270. doi: 10.1021/ja403440e
Xing Z, Liu Q, Asiri A M. Closely Interconnected Network of Molybdenum Phosphide Nanoparticles:A Highly Efficient Electrocatalyst for Generating Hydrogen from Water[J]. Adv Mater, 2014,26(32):5702-5710. doi: 10.1002/adma.201401692
Feng Y, Yu X Y, Paik U. Nickel Cobalt Phosphides Quasi-Hollow Nanocubes as an Efficient Electrocatalyst for Hydrogen Evolution in Alkaline Solution[J]. Chem Commun, 2016,52(8):1633-1636. doi: 10.1039/C5CC08991C
Li X, Liu W, Zhang M. Strong Metal-Phosphide Interactions in Core-Shell Geometry for Enhanced Electrocatalysis[J]. Nano Lett, 2017,17(3):2057-2063. doi: 10.1021/acs.nanolett.7b00126
Liu Q, Tian J, Cui W. Carbon Nanotubes Decorated with CoP Nanocrystals:A Highly Active Non-Noble-Metal Nanohybrid Electrocatalyst for Hydrogen Evolution[J]. Angew Chem Int Edit, 2014,53(26):6710-6714. doi: 10.1002/anie.201404161
Wang X D, Cao Y, Teng Y. Large-Area Synthesis of a Ni2P Honeycomb Electrode for Highly Efficient Water Splitting[J]. ACS Appl Mater Interfaces, 2017,9(38):32812-32819. doi: 10.1021/acsami.7b10893
Jiang N, You B, Sheng M. Electrodeposited Cobalt-Phosphorous-Derived Films as Competent Bifunctional Catalysts for Overall Water Splitting[J]. Angew Chem Int Edit, 2015,54(21):6251-6254. doi: 10.1002/anie.201501616
Liu Q, Gu S, Li C M. Electrodeposition of Nickel-Phosphorus Nanoparticles Film as a Janus Electrocatalyst for Electro-Splitting of Water[J]. J Power Sources, 2015,299(3):342-353.
Han S, Feng Y, Zhang F. Metal-Phosphide-Containing Porous Carbons Derived from an Ionic-Polymer Framework and Applied as Highly Efficient Electrochemical Catalysts for Water Splitting[J]. Adv Funct Mater, 2015,25(25):3899-3906. doi: 10.1002/adfm.201501390
Jiang D, Xu Y, Yang R. CoP3/CoMoP Heterogeneous Nanosheet Arrays as Robust Electrocatalyst for pH-Universal Hydrogen Evolution Reaction[J]. ACS Sustainable Chem Eng, 2019,7(10):9309-9317. doi: 10.1021/acssuschemeng.9b00357
Li H, Li Q, Wen P. Colloidal Cobalt Phosphide Nanocrystals as Trifunctional Electrocatalysts for Overall Water Splitting Powered by a Zinc-Air Battery[J]. Adv Mater, 2018,30(9):1538-1547.
Liu P, Rodriguez J A. Catalysts for Hydrogen Evolution from the NiFe Hydrogenase to the Ni2P (001) Surface:The Importance of Ensemble Effect[J]. J Am Chem Soc, 2005,127(42):14871-14878. doi: 10.1021/ja0540019
McCrory C C L, Jung S, Ferrer I M. Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices[J]. J Am Chem Soc, 2015,137(13):4347-4357. doi: 10.1021/ja510442p
McKone J R, Marinescu S C, Brunschwig B S. Earth-Abundant Hydrogen Evolution Electrocatalysts[J]. Chem Sci, 2014,5(3):865-878. doi: 10.1039/C3SC51711J
Zhang Y, Liu Y, Ma M. A Mn-Doped Ni2P Nanosheet Array:An Efficient and Durable Hydrogen Evolution Reaction Electrocatalyst in Alkaline Media[J]. Chem Commun, 2017,53(80):11048-11051. doi: 10.1039/C7CC06278H
Zhang Z, Jiang Y, Zheng X. Electrodepositing Ultra-Thin Ni(OH)2 Amorphous Film on Ni2P Nanosheets Array:An Efficient Strategy Toward Greatly Enhanced Alkaline Hydrogen Evolution Reaction[J]. New J Chem, 2018,42(14):11285-11288. doi: 10.1039/C8NJ01910J
Senevirathne K, Burns A W, Bussell M E. Synthesis and Characterization of Discrete Nickel Phosphide Nanoparticles:Effect of Surface Ligation Chemistry on Catalytic Hydrodesulfurization of Thiophene[J]. Adv Funct Mater, 2007,17(18):3933-3939. doi: 10.1002/adfm.200700758
Feng L, Vrubel H, Bensimon M. Easily-Prepared Dinickel Phosphide(Ni2P) Nanoparticles as an Efficient and Robust Electrocatalyst for Hydrogen Evolution[J]. Phys Chem Chem Phys, 2014,16(13):5917-5921. doi: 10.1039/c4cp00482e
Yan Q, Chen X, Wei T. Hierarchical Edge-Rich Nickel Phosphide Nanosheet Arrays as Efficient Electrocatalysts Toward Hydrogen Evolution in both Alkaline and Acidic Conditions[J]. ACS Sustainable Chem Eng, 2019,7(8):7804-7811. doi: 10.1021/acssuschemeng.8b06861
Zhang L, Ren X, Guo X. Efficient Hydrogen Evolution Electrocatalysis at Alkaline pH by Interface Engineering of Ni2P-CeO2[J]. Inorg Chem, 2018,57(2):548-552. doi: 10.1021/acs.inorgchem.7b02665
Yang F, Kang N, Yan J. Hydrogen Evolution Reaction Property of Molybdenum Disulfide/Nickel Phosphide Hybrids in Alkaline Solution[J]. Metals, 2018,8(5):3521-3530.
Du H, Xia L, Zhu S. Al-Doped Ni2P Nanosheet Array:A Superior and Durable Electrocatalyst for Alkaline Hydrogen Evolution[J]. Chem Commun, 2018,54(23):2894-2897. doi: 10.1039/C7CC09445K
Mu J, Li J, Yang E C. Three-Dimensional Hierarchical Nickel Cobalt Phosphide Nanoflowers as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction under Both Acidic and Alkaline Conditions[J]. ACS Appl Energy Mater, 2018,1(8):3742-3751. doi: 10.1021/acsaem.8b00540
Liang D, Jiang H, Xu Q. Modulating the Volmer Step by MOF Derivatives Assembled with Heterogeneous Ni2P-CoP Nanocrystals in Alkaline Hydrogen Evolution Reaction[J]. J Electrochem Soc, 2018,165(16):1286-1291. doi: 10.1149/2.0131816jes
Liu C, Gong T, Zhang J. Engineering Ni2P-NiSe2 Heterostructure Interface for Highly Efficient Alkaline Hydrogen Evolution[J]. Appl Catal B-Environ, 2020,262(27):13251-13259.
Laursen A B, Patraju K R, Whitaker M J. Nanocrystalline Ni5P4:A Hydrogen Evolution Electrocatalyst of Exceptional Efficiency in both Alkaline and Acidic Media[J]. Energy Environ Sci, 2015,8(3):1027-1034.
Yang F, Huang S, Zhang B. Facile Synthesis of Well-Dispersed Ni2P on N-Doped Nanomesh Carbon Matrix as a High-Efficiency Electrocatalyst for Alkaline Hydrogen Evolution Reaction[J]. Nanomaterials, 2019,9(7):43251-43260.
Wang X, Kolen'ko Y V, Liu L. Direct Solvothermal Phosphorization of Nickel Foam to Fabricate Integrated Ni2P-Nanorods/Ni Electrodes for Efficient Electrocatalytic Hydrogen Evolution[J]. Chem Commun, 2015,51(31):6738-6741. doi: 10.1039/C5CC00370A
Ma Z, Li R, Wang M. Self-supported Porous Ni-Fe-P Composite as an Efficient Electrocatalyst for Hydrogen Evolution Reaction in Both Acidic and Alkaline Medium[J]. Electrochim Acta, 2016,219(17):194-203.
Read C G, Callejas J F, Holder C F. General Strategy for the Synthesis of Transition Metal Phosphide Films for Electrocatalytic Hydrogen and Oxygen Evolution[J]. ACS Appl Mater Interfaces, 2016,8(20):12798-12803. doi: 10.1021/acsami.6b02352
Jin X, Li J, Cui Y. Cu3P-Ni2P Hybrid Hexagonal Nanosheet Arrays for Efficient Hydrogen Evolution Reaction in Alkaline Solution[J]. Inorg Chem, 2019,58(17):11630-11635. doi: 10.1021/acs.inorgchem.9b01567
Ledendecker M, Calderon S K, Papp C. The Synthesis of Nanostructured Ni5P4 Films and Their Use as a Non-noble Bifunctional Electrocatalyst for Full Water Splitting[J]. Angew Chem Int Edit, 2015,54(42):12361-12365. doi: 10.1002/anie.201502438
Wan L, Zhang J F, Chen Y Q. Varied Hydrogen Evolution Reaction Properties of Nickel Phosphide Nanoparticles with Different Compositions in Acidic and Alkaline Conditions[J]. J Mater Sci, 2017,52(2):804-814.
Pan Y, Liu Y, Zhao J. Monodispersed Nickel Phosphide Nanocrystals with Different Phases:Synthesis, Characterization and Electrocatalytic Properties for Hydrogen Evolution[J]. J Mater Chem A, 2015,3(4):1656-1665. doi: 10.1039/C4TA04867A
Pan Y, Lin Y, Chen Y. Cobalt Phosphide-Based Electrocatalysts:Synthesis and Phase Catalytic Activity Comparison for Hydrogen Evolution[J]. J Mater Chem A, 2016,4(13):4745-4754. doi: 10.1039/C6TA00575F
Wei M, Yang L, Wang L. In-Situ Potentiostatic Activation to Optimize Electrodeposited Cobalt-Phosphide Electrocatalyst for Highly Efficient Hydrogen Evolution in Alkaline Media[J]. Chem Phys Lett, 2017,681(9):92-104.
Sobhani A, Salavati-Niasari M. Synthesis of Co2P/Co Nanocomposites Using Single Source Precursor by Thermal Decomposition Method[J]. J Mater Sci-Mater Electron, 2016,27(4):3271-3280. doi: 10.1007/s10854-015-4155-0
Xu K, Ding H, Zhang M. Regulating Water-Reduction Kinetics in Cobalt Phosphide for Enhancing HER Catalytic Activity in Alkaline Solution[J]. Adv Mater, 2017,29(28):1470-1481.
Hei P, Shu C, Hou Z. Iron Doped CoP Nanowires on Carbon Cloth:An Efficient and Stable Electrocatalyst for Li-O2 Battery[J]. J Alloy Compd, 2020,820(23):1325-1334.
Zhang R, Wang X, Yu S. Ternary NiCo2Px Nanowires as pH-Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction[J]. Adv Mater, 2017,29(9):2586-2594.
Xu K, Cheng H, Liu L. Promoting Active Species Generation by Electrochemical Activation in Alkaline Media for Efficient Electrocatalytic Oxygen Evolution in Neutral Media[J]. Nano Lett, 2017,17(1):578-583. doi: 10.1021/acs.nanolett.6b04732
Li W, Zhang S, Fan Q. Hierarchically Scaffolded CoP/CoP2 Nanoparticles:Controllable Synthesis and Their Application as a Well-Matched Bifunctional Electrocatalyst for Overall Water Splitting[J]. Nanoscale, 2017,9(17):5677-5685. doi: 10.1039/C7NR01017F
Zhang L, Ding X, Cong M. Self-adaptive Amorphous Co2P@Co2P/Co Polyoxometalate/Nickel Foam as an Effective Electrode for Electrocatalytic Water Splitting in Alkaline Electrolyte[J]. Int J Hydrogen Energy, 2019,44(18):9203-9209. doi: 10.1016/j.ijhydene.2019.02.096
Popczun E J, Read C G, Roske C W. Highly Active Electrocatalysis of the Hydrogen Evolution Reaction by Cobalt Phosphide Nanoparticles[J]. Angew Chem Int Edit, 2014,53(21):5427-5430. doi: 10.1002/anie.201402646
Han Y, Li P, Tian Z. Molybdenum-Doped Porous Cobalt Phosphide Nanosheets for Efficient Alkaline Hydrogen Evolution[J]. ACS Appl Energy Mater, 2019,2(9):6302-6310. doi: 10.1021/acsaem.9b00924
Zhang Y, Gao L, Hensen E J M. Evaluating the Stability of Co2P Electrocatalysts in the Hydrogen Evolution Reaction for both Acidic and Alkaline Electrolytes[J]. ACS Energy Lett, 2018,3(6):1360-1365. doi: 10.1021/acsenergylett.8b00514
Peng X, Qasim A M, Jin W. Ni-Doped Amorphous Iron Phosphide Nanoparticles on TiN Nanowire Arrays:An Advanced Alkaline Hydrogen Evolution Electrocatalyst[J]. Nano Energy, 2018,53(12):66-73.
Son C Y, Kwak I H, Lim Y R. FeP and FeP2 Nanowires for Efficient Electrocatalytic Hydrogen Evolution Reaction[J]. Chem Commun, 2016,52(13):2819-2822. doi: 10.1039/C5CC09832G
Zhao X, Zhang Z, Cao X. Elucidating the Sources of Activity and Stability of FeP Electrocatalyst for Hydrogen Evolution Reactions in Acidic and Alkaline Media[J]. Appl Catal B-Environ, 2020,260(24):584-593.
Liang Y, Liu Q, Asiri A M. Self-Supported FeP Nanorod Arrays:A Cost-Effective 3D Hydrogen Evolution Cathode with High Catalytic Activity[J]. ACS Catal, 2014,4(11):4065-4069. doi: 10.1021/cs501106g
Grosvenor A P, Wik S D, Cavell R G. Examination of the Bonding in Binary Transiton-Metal Mono-phosphides MP(M=Cr, Mn, Fe, Co) by X-Ray Photoelectron Spectroscopy[J]. Inorg Chem, 2005,44(24):8988-8998. doi: 10.1021/ic051004d
Zhang Z, Lu B, Hao J. FeP Nanoparticles Grown on Graphene Sheets as Highly Active Non-Precious-Metal Electrocatalysts for Hydrogen Evolution Reaction[J]. Chem Commun, 2014,50(78):11554-11557. doi: 10.1039/C4CC05285D
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
Xueting Cao , Shuangshuang Cha , Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
Zunyuan Xie , Lijin Yang , Zixiao Wan , Xiaoyu Liu , Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137
Juan Yuan , Bin Zhang , Jinping Wu , Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014
Simin Fang , Wei Huang , Guanghua Yu , Cong Wei , Mingli Gao , Guangshui Li , Hongjun Tian , Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289