Citation: MENG Yang, YANG Chan, PENG Juan. Progress in Iron, Cobalt and Nickel-Based Metal Phosphide Nano-catalysts for Hydrogen Production under Alkaline Conditions[J]. Chinese Journal of Applied Chemistry, ;2020, 37(7): 733-745. doi: 10.11944/j.issn.1000-0518.2020.07.200058 shu

Progress in Iron, Cobalt and Nickel-Based Metal Phosphide Nano-catalysts for Hydrogen Production under Alkaline Conditions

  • Corresponding author: PENG Juan, pengjuan@nxu.edu.cn
  • Received Date: 3 March 2020
    Revised Date: 22 April 2020
    Accepted Date: 15 May 2020

    Fund Project: the National Natural Science Foundation of China 21765016Supported by the National Natural Science Foundation of China(No.21765016)

Figures(6)

  • Transition metal phosphides (TMPs) have been widely recognized as favorable electrocatalytic materials for hydrogen evolution reaction (HER) due to their high conductivity and good stability. In this review, we highlight the progress on the synthesis and characterization of Ni, Co and Fe based phosphides nanomaterials, as well as the HER activities of TMPs in alkaline solutions. The TMPs show low overpotential at a specific current density and have good stability, indicating that more phosphorus-rich phases exhibit higher HER activities within certain limits, which provides a direction for our future research.
  • 加载中
    1. [1]

      Dai D, Wei B, Li Y. Self-supported Hierarchical Fe(PO3)2@Cu3P Nanotube Arrays for Efficient Hydrogen Evolution in Alkaline Media[J]. J Alloys Comp, 2020,820(2):258-266.

    2. [2]

      Esmailzadeh S, Shahrabi T, Darband G B. Pulse Electrodeposition of Nickel Selenide Nanostructure as a Binder-Free and High-Efficient Catalyst for both Electrocatalytic Hydrogen and Oxygen Evolution Reactions in Alkaline Solution[J]. Electrochim Acta, 2020,334(5):131-140.  

    3. [3]

      Liu H, Qian X, Niu Y. Hierarchical Ni-MoSex@CoSe2 Core-Shell Nanosphere as Highly Active Bifunctional Catalyst for Efficient Dye-Sensitized Solar Cell and Alkaline Hydrogen Evolution[J]. Chem Eng J, 2020,383(27):427-436.  

    4. [4]

      Cheng H E, Li W L, Yang Z P. Enhancement of Hydrogen Evolution Reaction by Pt Nanopillar-Array Electrode in Alkaline Media and the Effect of Nanopillar Length on the Electrode Efficiency[J]. Int J Hydrogen Energy, 2019,44(57):30141-30150. doi: 10.1016/j.ijhydene.2019.09.188

    5. [5]

      Kim J, Kim H, Lee W J. Theoretical and Experimental Understanding of Hydrogen Evolution Reaction Kinetics in Alkaline Electrolytes with Pt-Based Core-Shell Nanocrystals[J]. J Am Chem Soc, 2019,141(45):18256-18263. doi: 10.1021/jacs.9b09229

    6. [6]

      Wang X, Liu R, Zhang Y. Hierarchical Ni3S2-NiOOH Hetero-Nanocomposite Grown on Nickel Foam as a Noble-Metal-Free Electrocatalyst for Hydrogen Evolution Reaction in Alkaline Electrolyte[J]. Appl Surf Sci, 2018,456(5):164-173.

    7. [7]

      Zhang L, Cong M, Wang Y. V4P6.98/VO(PO3)2 as an Efficient Non-noble Metal Catalyst for Electrochemical Hydrogen Evolution in Alkaline Electrolyte[J]. ChemElectroChem, 2019,6(5):1329-1332. doi: 10.1002/celc.201801637

    8. [8]

      Zhang Y, Wang Y, Han C. Tungsten-Coated Nano-Boron Carbide as a Non-noble Metal Bifunctional Electrocatalyst for Oxygen Evolution and Hydrogen Evolution Reactions in Alkaline Media[J]. Nanoscale, 2017,9(48):19176-19182. doi: 10.1039/C7NR08092A

    9. [9]

      Cai J, Song Y, Zang Y. N-Induced Lattice Contraction Generally Boosts the Hydrogen Evolution Catalysis of P-Rich Metal Phosphides[J]. Sci Adv, 2020,6(1):28252-28261.  

    10. [10]

      PAN Zhiyu. Research Progress of Transition Metal-Based Electrocatalytic Hydrogen Evolution Materials[J]. Mod Chem Res, 2019,2(1841):143-144.  

    11. [11]

      Yu H, Li J, Gao G. Metal-Organic Frameworks Derived Carbon-Incorporated Cobalt/Dicobalt Phosphide Microspheres as Mott-Schottky Electrocatalyst for Efficient and Stable Hydrogen Evolution Reaction in Wide-pH Environment[J]. J Colloid Interface Sci, 2020,565(23):513-522.  

    12. [12]

      Du H, Kong R M, Guo X. Recent Progress in Transition Metal Phosphides with Enhanced Electrocatalysis for Hydrogen Evolution[J]. Nanoscale, 2018,10(46):21617-21624. doi: 10.1039/C8NR07891B

    13. [13]

      Lv Y, Wang X. Nonprecious Metal Phosphides as Catalysts for Hydrogen Evolution, Oxygen Reduction and Evolution Reactions[J]. Catal Sci Technol, 2017,7(17):3676-3691. doi: 10.1039/C7CY00715A

    14. [14]

      Callejas J F, Read C G, Roske C W. Synthesis, Characterization, and Properties of Metal Phosphide Catalysts for the Hydrogen-Evolution Reaction[J]. Chem Mater, 2016,28(17):6017-6044. doi: 10.1021/acs.chemmater.6b02148

    15. [15]

      Jiang P, Liu Q, Sun X. NiP2 Nanosheet Arrays Supported on Carbon Cloth:An Efficient 3D Hydrogen Evolution Cathode in both Acidic and Alkaline Solutions[J]. Nanoscale, 2014,6(22):13440-13445. doi: 10.1039/C4NR04866K

    16. [16]

      Zhang Y, Wang Y, Wang T. Heterostructure of 2D CoP Nanosheets/1D Carbon Nanotubes to Significantly Boost the Alkaline Hydrogen Evolution[J]. Adv Mater Interfaces, 2020,7(2):2571-2579.  

    17. [17]

      CHEN Yaqiong, ZHANG Jinfeng, WAN Lei. Effect of Nickel Phosphide Nanoparticles Crystallization on Hydrogen Evolution Reaction Catalytic Performance[J]. Trans Nonferrous Met Soc China, 2017,27(2):369-376.  

    18. [18]

      Zhang S, Xiong T, Tang X. Engineering Inner-Porous Cobalt Phosphide Nanowire Based on Controllable Phosphating for Efficient Hydrogen Evolution in Both Acidic and Alkaline Conditions[J]. Appl Surf Sci, 2019,481(15):1524-1531.  

    19. [19]

      McEnaney J M, Crompton J C, Callejas J F. Amorphous Molybdenum Phosphide Nanoparticles for Electrocatalytic Hydrogen Evolution[J]. Chem Mater, 2014,26(16):4826-4831. doi: 10.1021/cm502035s

    20. [20]

      Popczun E J, McKone J R, Read C G. Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction[J]. J Am Chem Soc, 2013,135(25):9267-9270. doi: 10.1021/ja403440e

    21. [21]

      Xing Z, Liu Q, Asiri A M. Closely Interconnected Network of Molybdenum Phosphide Nanoparticles:A Highly Efficient Electrocatalyst for Generating Hydrogen from Water[J]. Adv Mater, 2014,26(32):5702-5710. doi: 10.1002/adma.201401692

    22. [22]

      Feng Y, Yu X Y, Paik U. Nickel Cobalt Phosphides Quasi-Hollow Nanocubes as an Efficient Electrocatalyst for Hydrogen Evolution in Alkaline Solution[J]. Chem Commun, 2016,52(8):1633-1636. doi: 10.1039/C5CC08991C

    23. [23]

      Li X, Liu W, Zhang M. Strong Metal-Phosphide Interactions in Core-Shell Geometry for Enhanced Electrocatalysis[J]. Nano Lett, 2017,17(3):2057-2063. doi: 10.1021/acs.nanolett.7b00126

    24. [24]

      Liu Q, Tian J, Cui W. Carbon Nanotubes Decorated with CoP Nanocrystals:A Highly Active Non-Noble-Metal Nanohybrid Electrocatalyst for Hydrogen Evolution[J]. Angew Chem Int Edit, 2014,53(26):6710-6714. doi: 10.1002/anie.201404161

    25. [25]

      Wang X D, Cao Y, Teng Y. Large-Area Synthesis of a Ni2P Honeycomb Electrode for Highly Efficient Water Splitting[J]. ACS Appl Mater Interfaces, 2017,9(38):32812-32819. doi: 10.1021/acsami.7b10893

    26. [26]

      Jiang N, You B, Sheng M. Electrodeposited Cobalt-Phosphorous-Derived Films as Competent Bifunctional Catalysts for Overall Water Splitting[J]. Angew Chem Int Edit, 2015,54(21):6251-6254. doi: 10.1002/anie.201501616

    27. [27]

      Liu Q, Gu S, Li C M. Electrodeposition of Nickel-Phosphorus Nanoparticles Film as a Janus Electrocatalyst for Electro-Splitting of Water[J]. J Power Sources, 2015,299(3):342-353.  

    28. [28]

      Han S, Feng Y, Zhang F. Metal-Phosphide-Containing Porous Carbons Derived from an Ionic-Polymer Framework and Applied as Highly Efficient Electrochemical Catalysts for Water Splitting[J]. Adv Funct Mater, 2015,25(25):3899-3906. doi: 10.1002/adfm.201501390

    29. [29]

      Jiang D, Xu Y, Yang R. CoP3/CoMoP Heterogeneous Nanosheet Arrays as Robust Electrocatalyst for pH-Universal Hydrogen Evolution Reaction[J]. ACS Sustainable Chem Eng, 2019,7(10):9309-9317. doi: 10.1021/acssuschemeng.9b00357

    30. [30]

      Li H, Li Q, Wen P. Colloidal Cobalt Phosphide Nanocrystals as Trifunctional Electrocatalysts for Overall Water Splitting Powered by a Zinc-Air Battery[J]. Adv Mater, 2018,30(9):1538-1547.  

    31. [31]

      Liu P, Rodriguez J A. Catalysts for Hydrogen Evolution from the NiFe Hydrogenase to the Ni2P (001) Surface:The Importance of Ensemble Effect[J]. J Am Chem Soc, 2005,127(42):14871-14878. doi: 10.1021/ja0540019

    32. [32]

      McCrory C C L, Jung S, Ferrer I M. Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices[J]. J Am Chem Soc, 2015,137(13):4347-4357. doi: 10.1021/ja510442p

    33. [33]

      McKone J R, Marinescu S C, Brunschwig B S. Earth-Abundant Hydrogen Evolution Electrocatalysts[J]. Chem Sci, 2014,5(3):865-878. doi: 10.1039/C3SC51711J

    34. [34]

      Zhang Y, Liu Y, Ma M. A Mn-Doped Ni2P Nanosheet Array:An Efficient and Durable Hydrogen Evolution Reaction Electrocatalyst in Alkaline Media[J]. Chem Commun, 2017,53(80):11048-11051. doi: 10.1039/C7CC06278H

    35. [35]

      Zhang Z, Jiang Y, Zheng X. Electrodepositing Ultra-Thin Ni(OH)2 Amorphous Film on Ni2P Nanosheets Array:An Efficient Strategy Toward Greatly Enhanced Alkaline Hydrogen Evolution Reaction[J]. New J Chem, 2018,42(14):11285-11288. doi: 10.1039/C8NJ01910J

    36. [36]

      Senevirathne K, Burns A W, Bussell M E. Synthesis and Characterization of Discrete Nickel Phosphide Nanoparticles:Effect of Surface Ligation Chemistry on Catalytic Hydrodesulfurization of Thiophene[J]. Adv Funct Mater, 2007,17(18):3933-3939. doi: 10.1002/adfm.200700758

    37. [37]

      Feng L, Vrubel H, Bensimon M. Easily-Prepared Dinickel Phosphide(Ni2P) Nanoparticles as an Efficient and Robust Electrocatalyst for Hydrogen Evolution[J]. Phys Chem Chem Phys, 2014,16(13):5917-5921. doi: 10.1039/c4cp00482e

    38. [38]

      Yan Q, Chen X, Wei T. Hierarchical Edge-Rich Nickel Phosphide Nanosheet Arrays as Efficient Electrocatalysts Toward Hydrogen Evolution in both Alkaline and Acidic Conditions[J]. ACS Sustainable Chem Eng, 2019,7(8):7804-7811. doi: 10.1021/acssuschemeng.8b06861

    39. [39]

      Zhang L, Ren X, Guo X. Efficient Hydrogen Evolution Electrocatalysis at Alkaline pH by Interface Engineering of Ni2P-CeO2[J]. Inorg Chem, 2018,57(2):548-552. doi: 10.1021/acs.inorgchem.7b02665

    40. [40]

      Yang F, Kang N, Yan J. Hydrogen Evolution Reaction Property of Molybdenum Disulfide/Nickel Phosphide Hybrids in Alkaline Solution[J]. Metals, 2018,8(5):3521-3530.  

    41. [41]

      Du H, Xia L, Zhu S. Al-Doped Ni2P Nanosheet Array:A Superior and Durable Electrocatalyst for Alkaline Hydrogen Evolution[J]. Chem Commun, 2018,54(23):2894-2897. doi: 10.1039/C7CC09445K

    42. [42]

      Mu J, Li J, Yang E C. Three-Dimensional Hierarchical Nickel Cobalt Phosphide Nanoflowers as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction under Both Acidic and Alkaline Conditions[J]. ACS Appl Energy Mater, 2018,1(8):3742-3751. doi: 10.1021/acsaem.8b00540

    43. [43]

      Liang D, Jiang H, Xu Q. Modulating the Volmer Step by MOF Derivatives Assembled with Heterogeneous Ni2P-CoP Nanocrystals in Alkaline Hydrogen Evolution Reaction[J]. J Electrochem Soc, 2018,165(16):1286-1291. doi: 10.1149/2.0131816jes

    44. [44]

      Liu C, Gong T, Zhang J. Engineering Ni2P-NiSe2 Heterostructure Interface for Highly Efficient Alkaline Hydrogen Evolution[J]. Appl Catal B-Environ, 2020,262(27):13251-13259.  

    45. [45]

      Laursen A B, Patraju K R, Whitaker M J. Nanocrystalline Ni5P4:A Hydrogen Evolution Electrocatalyst of Exceptional Efficiency in both Alkaline and Acidic Media[J]. Energy Environ Sci, 2015,8(3):1027-1034.  

    46. [46]

      Yang F, Huang S, Zhang B. Facile Synthesis of Well-Dispersed Ni2P on N-Doped Nanomesh Carbon Matrix as a High-Efficiency Electrocatalyst for Alkaline Hydrogen Evolution Reaction[J]. Nanomaterials, 2019,9(7):43251-43260.  

    47. [47]

      Wang X, Kolen'ko Y V, Liu L. Direct Solvothermal Phosphorization of Nickel Foam to Fabricate Integrated Ni2P-Nanorods/Ni Electrodes for Efficient Electrocatalytic Hydrogen Evolution[J]. Chem Commun, 2015,51(31):6738-6741. doi: 10.1039/C5CC00370A

    48. [48]

      Ma Z, Li R, Wang M. Self-supported Porous Ni-Fe-P Composite as an Efficient Electrocatalyst for Hydrogen Evolution Reaction in Both Acidic and Alkaline Medium[J]. Electrochim Acta, 2016,219(17):194-203.  

    49. [49]

      Read C G, Callejas J F, Holder C F. General Strategy for the Synthesis of Transition Metal Phosphide Films for Electrocatalytic Hydrogen and Oxygen Evolution[J]. ACS Appl Mater Interfaces, 2016,8(20):12798-12803. doi: 10.1021/acsami.6b02352

    50. [50]

      Jin X, Li J, Cui Y. Cu3P-Ni2P Hybrid Hexagonal Nanosheet Arrays for Efficient Hydrogen Evolution Reaction in Alkaline Solution[J]. Inorg Chem, 2019,58(17):11630-11635. doi: 10.1021/acs.inorgchem.9b01567

    51. [51]

      Ledendecker M, Calderon S K, Papp C. The Synthesis of Nanostructured Ni5P4 Films and Their Use as a Non-noble Bifunctional Electrocatalyst for Full Water Splitting[J]. Angew Chem Int Edit, 2015,54(42):12361-12365. doi: 10.1002/anie.201502438

    52. [52]

      Wan L, Zhang J F, Chen Y Q. Varied Hydrogen Evolution Reaction Properties of Nickel Phosphide Nanoparticles with Different Compositions in Acidic and Alkaline Conditions[J]. J Mater Sci, 2017,52(2):804-814.  

    53. [53]

      Pan Y, Liu Y, Zhao J. Monodispersed Nickel Phosphide Nanocrystals with Different Phases:Synthesis, Characterization and Electrocatalytic Properties for Hydrogen Evolution[J]. J Mater Chem A, 2015,3(4):1656-1665. doi: 10.1039/C4TA04867A

    54. [54]

      Pan Y, Lin Y, Chen Y. Cobalt Phosphide-Based Electrocatalysts:Synthesis and Phase Catalytic Activity Comparison for Hydrogen Evolution[J]. J Mater Chem A, 2016,4(13):4745-4754. doi: 10.1039/C6TA00575F

    55. [55]

      Wei M, Yang L, Wang L. In-Situ Potentiostatic Activation to Optimize Electrodeposited Cobalt-Phosphide Electrocatalyst for Highly Efficient Hydrogen Evolution in Alkaline Media[J]. Chem Phys Lett, 2017,681(9):92-104.  

    56. [56]

      Sobhani A, Salavati-Niasari M. Synthesis of Co2P/Co Nanocomposites Using Single Source Precursor by Thermal Decomposition Method[J]. J Mater Sci-Mater Electron, 2016,27(4):3271-3280. doi: 10.1007/s10854-015-4155-0

    57. [57]

      Xu K, Ding H, Zhang M. Regulating Water-Reduction Kinetics in Cobalt Phosphide for Enhancing HER Catalytic Activity in Alkaline Solution[J]. Adv Mater, 2017,29(28):1470-1481.  

    58. [58]

      Hei P, Shu C, Hou Z. Iron Doped CoP Nanowires on Carbon Cloth:An Efficient and Stable Electrocatalyst for Li-O2 Battery[J]. J Alloy Compd, 2020,820(23):1325-1334.

    59. [59]

      Zhang R, Wang X, Yu S. Ternary NiCo2Px Nanowires as pH-Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction[J]. Adv Mater, 2017,29(9):2586-2594.  

    60. [60]

      Xu K, Cheng H, Liu L. Promoting Active Species Generation by Electrochemical Activation in Alkaline Media for Efficient Electrocatalytic Oxygen Evolution in Neutral Media[J]. Nano Lett, 2017,17(1):578-583. doi: 10.1021/acs.nanolett.6b04732

    61. [61]

      Li W, Zhang S, Fan Q. Hierarchically Scaffolded CoP/CoP2 Nanoparticles:Controllable Synthesis and Their Application as a Well-Matched Bifunctional Electrocatalyst for Overall Water Splitting[J]. Nanoscale, 2017,9(17):5677-5685. doi: 10.1039/C7NR01017F

    62. [62]

      Zhang L, Ding X, Cong M. Self-adaptive Amorphous Co2P@Co2P/Co Polyoxometalate/Nickel Foam as an Effective Electrode for Electrocatalytic Water Splitting in Alkaline Electrolyte[J]. Int J Hydrogen Energy, 2019,44(18):9203-9209. doi: 10.1016/j.ijhydene.2019.02.096

    63. [63]

      Popczun E J, Read C G, Roske C W. Highly Active Electrocatalysis of the Hydrogen Evolution Reaction by Cobalt Phosphide Nanoparticles[J]. Angew Chem Int Edit, 2014,53(21):5427-5430. doi: 10.1002/anie.201402646

    64. [64]

      Han Y, Li P, Tian Z. Molybdenum-Doped Porous Cobalt Phosphide Nanosheets for Efficient Alkaline Hydrogen Evolution[J]. ACS Appl Energy Mater, 2019,2(9):6302-6310. doi: 10.1021/acsaem.9b00924

    65. [65]

      Zhang Y, Gao L, Hensen E J M. Evaluating the Stability of Co2P Electrocatalysts in the Hydrogen Evolution Reaction for both Acidic and Alkaline Electrolytes[J]. ACS Energy Lett, 2018,3(6):1360-1365. doi: 10.1021/acsenergylett.8b00514

    66. [66]

      Peng X, Qasim A M, Jin W. Ni-Doped Amorphous Iron Phosphide Nanoparticles on TiN Nanowire Arrays:An Advanced Alkaline Hydrogen Evolution Electrocatalyst[J]. Nano Energy, 2018,53(12):66-73.  

    67. [67]

      Son C Y, Kwak I H, Lim Y R. FeP and FeP2 Nanowires for Efficient Electrocatalytic Hydrogen Evolution Reaction[J]. Chem Commun, 2016,52(13):2819-2822. doi: 10.1039/C5CC09832G

    68. [68]

      Zhao X, Zhang Z, Cao X. Elucidating the Sources of Activity and Stability of FeP Electrocatalyst for Hydrogen Evolution Reactions in Acidic and Alkaline Media[J]. Appl Catal B-Environ, 2020,260(24):584-593.  

    69. [69]

      Liang Y, Liu Q, Asiri A M. Self-Supported FeP Nanorod Arrays:A Cost-Effective 3D Hydrogen Evolution Cathode with High Catalytic Activity[J]. ACS Catal, 2014,4(11):4065-4069. doi: 10.1021/cs501106g

    70. [70]

      Grosvenor A P, Wik S D, Cavell R G. Examination of the Bonding in Binary Transiton-Metal Mono-phosphides MP(M=Cr, Mn, Fe, Co) by X-Ray Photoelectron Spectroscopy[J]. Inorg Chem, 2005,44(24):8988-8998. doi: 10.1021/ic051004d

    71. [71]

      Zhang Z, Lu B, Hao J. FeP Nanoparticles Grown on Graphene Sheets as Highly Active Non-Precious-Metal Electrocatalysts for Hydrogen Evolution Reaction[J]. Chem Commun, 2014,50(78):11554-11557. doi: 10.1039/C4CC05285D

  • 加载中
    1. [1]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    2. [2]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    6. [6]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    7. [7]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    8. [8]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    9. [9]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    10. [10]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    11. [11]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    12. [12]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    13. [13]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    14. [14]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    15. [15]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    16. [16]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    17. [17]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    18. [18]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    19. [19]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    20. [20]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

Metrics
  • PDF Downloads(95)
  • Abstract views(4880)
  • HTML views(1935)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return