Citation: SHI Yanlong, FENG Xiaojuan, YANG Ruihua, WANG Jianrong. Preparation of Superhydrophobic and Superoleophilic Corn Straw Fibers Oil Absorbents and Application to the Removal of Spilled Oil from Water[J]. Chinese Journal of Applied Chemistry, ;2020, 37(7): 793-802. doi: 10.11944/j.issn.1000-0518.2020.07.200030 shu

Preparation of Superhydrophobic and Superoleophilic Corn Straw Fibers Oil Absorbents and Application to the Removal of Spilled Oil from Water

  • Corresponding author: SHI Yanlong, yanlongshi726@126.com
  • Received Date: 23 January 2020
    Revised Date: 23 March 2020
    Accepted Date: 29 April 2020

    Fund Project: the Scientific Research Foundation of the Higher Education Institutions of Gansu Province 2016B-091Supported by the National Natural Science Foundation of China(No.41761061), "Light of West China" Program of Chinese Academy of Sciences, the Scientific Research Foundation of the Higher Education Institutions of Gansu Province(No.2016B-091), the General Program of the Key Laboratory of Hexi Corridor Resources Utilization of Gansu Universities(No.XZ1603), and the Undergraduate Innovation and Entrepreneurship Training Program of Gansu Province(No.81)the National Natural Science Foundation of China 41761061the General Program of the Key Laboratory of Hexi Corridor Resources Utilization of Gansu Universities XZ1603the Undergraduate Innovation and Entrepreneurship Training Program of Gansu Province 81

Figures(6)

  • Materials with both superhydrophobicity and superoleophilicity have attracted considerable attention due to the potential application in the removal of the spilled oil from water. In the past decades, numerous techniques have been adopted to construct superhydrophobic and superoleophilic materials, but it is still a great challenge to obtain this kind of material via a more facile, low cost and environmentally friendly method. Herein, corn straw fibers with superhydrophobicity and superoleophilicity were obtained by dip-coating TiO2 sol and subsequent surface modification with octyltrimethoxysilane (OTS). The contact angle of water droplets and oil droplets on the as-prepared sample is 160° and 0°, respectively. The results indicate that the superhydrophobicity is attributed to the joint effects of natural hierarchical structures with micro/nanometer scale of corn straw fibers and the chemical composition with low surface energy induced by the hydrophobic surface modification. With the characteristics of water repellency and selective oil adsorption, the as-prepared corn straw fibers could be chosen to remove the spilled oil from water with high separation efficiency, stable durability and recyclability. The method presented here is expected to be employed as a technique to prepare oil absorbent with superhydrophobicity and superoleophilicity, which may be used to treat the oily wastewater in practical application with the advantages of low cost, simple method and easy biodegradability as well as stable recyclability.
  • 加载中
    1. [1]

      Wang C F, Tzeng F S, Chen H G. Ultraviolet-Durable Superhydrophobic Zinc Oxide-Coated Mesh Films for Surface and Underwater-Oil Capture and Transportation[J]. Langmuir, 2012,28(26):10015-10019. doi: 10.1021/la301839a

    2. [2]

      Chu Z L, Feng Y J, Seeger S. Oil/Water Separation with Selective Superantiwetting/Superwetting Surface Materials[J]. Angew Chem Int Ed, 2015,54(8):2328-2338. doi: 10.1002/anie.201405785

    3. [3]

      Gu J H, Fan H W, Li C X. Robust Superhydrophobic/Superoleophilic Wrinkled Microspherical MOF@rGO Composites for Efficient Oil-Water Separation[J]. Angew Chem, 2019,131(16):5351-5355. doi: 10.1002/ange.201814487

    4. [4]

      Nanda D, Sahoo A, Kumar A. Facile Approach to Develop Durable and Reusable Superhydrophobic/Superoleophilic Coatings for Steel Mesh Surfaces[J]. J Colloid Interfaces Sci, 2019,535:50-57. doi: 10.1016/j.jcis.2018.09.088

    5. [5]

      Yu T L, Lu S X, Xu W G. Preparation of Superhydrophobic/Superoleophilic Copper Coated Titanium Mesh with Excellent Ice-Phobic and Water-Oil Separation Performance[J]. Appl Surf Sci, 2019,476:353-362. doi: 10.1016/j.apsusc.2019.01.117

    6. [6]

      Gao M L, Zhao S Y, Chen Z Y. Superhydrophobic/Superoleophilic MOF Composites for Oil-Water Separation[J]. Inorg Chem, 2019,58(4):2261-2264. doi: 10.1021/acs.inorgchem.8b03293

    7. [7]

      Wang S T, Liu K S, Yao X. Bioinspired Surfaces with Superwettability:New Insight on Theory, Design, and Applications[J]. Chem Rev, 2015,115:8230-8293. doi: 10.1021/cr400083y

    8. [8]

      Öner D, McCarthy T J. Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability[J]. Langmuir, 2000,16(20):7777-7782. doi: 10.1021/la000598o

    9. [9]

      Wang R, Hashimoto K, Fujishima A. Photogeneration of Highly Amphiphilic TiO2 Surfaces[J]. Adv Mater, 1998,10(2):135-138.  

    10. [10]

      Cao M, Luo X M, Ren H J. Hot Water-Repellent and Mechanically Durable Superhydrophobic Mesh for Oil/Water Separation[J]. J Colloid Interfaces Sci, 2018,512:567-574. doi: 10.1016/j.jcis.2017.10.059

    11. [11]

      Xiang Y Q, Pang Y Y, Jiang X M. One-step Fabrication of Novel Superhydrophobic and Superoleophilic Sponge with Outstanding Absorbency and Flame-Retardancy for the Selective Removal of Oily Organic Solvent from Water[J]. Appl Surf Sci, 2018,428:338-347. doi: 10.1016/j.apsusc.2017.09.093

    12. [12]

      Wu H, Wu L H, Lu S C. Robust Superhydrophobic and Superoleophilic Filter Paper via Atom Transfer Radical Polymerization for Oil/Water Separation[J]. Carbohydr Polym, 2018,181:419-425. doi: 10.1016/j.carbpol.2017.08.078

    13. [13]

      Wang Y K, Wang B, Wang J H. Superhydrophobic and Superoleophilic Porous Reduced Graphene Oxide/Polycarbonate Monoliths for High-Efficiency Oil/Water Separation[J]. J Hazard Mater, 2018,344:849-856. doi: 10.1016/j.jhazmat.2017.11.040

    14. [14]

      Yang J, Zhang Z Z, Xu X H. Superhydrophilic Superoleophobic Coatings[J]. J Mater Chem, 2012,22:2834-2837. doi: 10.1039/c2jm15987b

    15. [15]

      Zhang F, Zhang W B, Shi Z. Nanowire-Haired Inorganic Membranes with Superhydrophilicity and Underwater Ultralow Adhesive Superoleophobicity for High-Efficiency Oil/Water Separation[J]. Adv Mater, 2013,25:4192-4198.  

    16. [16]

      Sun X F, Sun J X. Acetylation of Rice Straw with or Without Catalysts and Its Characterization as a Natural Sorbent in Oil Spill Cleanup[J]. J Agric Food Chem, 2002,50:6428-6433. doi: 10.1021/jf020392o

    17. [17]

      Zhu H L, Luo W, Ciesielski P N. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications[J]. Chem Rev, 2016,116:9305-9374. doi: 10.1021/acs.chemrev.6b00225

    18. [18]

      Zang D, Zhang M, Liu F. Superhydrophobic/Superoleophilic Corn Straw Fibers as Effective Oil Sorbents for the Recovery of Spilled Oil[J]. J Chem Technol Biotechnol, 2016,91(9):2449-2456. doi: 10.1002/jctb.4834

    19. [19]

      SHI Yanlong, FENG Xiaojuan, WANG Yongsheng. Preparation of Oil Sorbents of Corn Straw and Its Application in Oil-Water Separation[J]. Chinese Sci Bull, 2019,64:87-94.  

    20. [20]

      Shi Y L, Feng X J, Yang W. Preparation of Super-hydropbobic Titanium Oxide Film by Sol-Gel on Substrate of Common Filter Paper[J]. J Sol-Gel Sci Technol, 2011,59:43-47. doi: 10.1007/s10971-011-2459-y

    21. [21]

      CHEN Kailing, ZHAO Yunhui, YUAN Xiaoyan. Chemical Modification of Silica:Method, Mechanism, and Application[J]. Prog Chem, 2013,25:95-104.  

    22. [22]

      Wenzel R N. Resistance of Solid Surfaces to Wetting by Water[J]. Ind Eng Chem, 1936,28(8):988-994. doi: 10.1021/ie50320a024

    23. [23]

      Tsibouklis J, Stone M, Thorpe A A. Surface Energy Characteristics of Polymer Film Structures:A Further Insight into the Molecular Design Requirements[J]. Langmuir, 1999,15(20):7076-7079. doi: 10.1021/la990411x

    24. [24]

      Cassie A B D, Trans S B. Wettability of Porous Surfaces[J]. Faraday Soc, 1944,40:546-551. doi: 10.1039/tf9444000546

    25. [25]

      Gross M, Varnik F, Raabe D. Small Droplets on Superhydrophobic Substrates[J]. Phys Rev E, 2010,81051606.  

    26. [26]

      Gao L C, Mc Carthy T J. Contact Angle Hysteresis Explained[J]. Langmuir, 2006,22(14):6234-6237. doi: 10.1021/la060254j

    27. [27]

      Yong J L, Chen F, Yang Q. Superoleophobic Surfaces[J]. Chem Soc Rev, 2017,46(14):4168-4217. doi: 10.1039/C6CS00751A

  • 加载中
    1. [1]

      Guifeng WenZheyuan ZhongYue FanXuelin TianShilin Huang . Multidimensional droplet manipulation on superhydrophobic surfaces using acoustic tweezers. Chinese Chemical Letters, 2025, 36(5): 110672-. doi: 10.1016/j.cclet.2024.110672

    2. [2]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    3. [3]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    4. [4]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    5. [5]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    6. [6]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    7. [7]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    8. [8]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    9. [9]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    10. [10]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    11. [11]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    12. [12]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    13. [13]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    14. [14]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    15. [15]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    16. [16]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    17. [17]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    18. [18]

      Xing Xiao Yunling Jia Wanyu Hong Yuqing He Yanjun Wang Lizhi Zhao Huiqin An Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474

    19. [19]

      Siqi SunCheng ZhaoZhaohuan ZhangDing WangXinru YinJingting HanJinlei WeiYong ZhaoYongheng Zhu . Highly selective QCM sensor based on functionalized hierarchical hollow TiO2 nanospheres for detecting ppb-level 3-hydroxy-2-butanone biomarker at room temperature. Chinese Chemical Letters, 2025, 36(5): 109939-. doi: 10.1016/j.cclet.2024.109939

    20. [20]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

Metrics
  • PDF Downloads(1)
  • Abstract views(423)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return