Citation: ZHANG Chenglu, SUN Yuedong, DING Yanwei, WANG Jing, LIU Xingbing, WANG Nan, SONG Fulu. A Quinolinone-Based Fluorescent Probe for Rapid and Highly Selective Detection of Glutathione[J]. Chinese Journal of Applied Chemistry, ;2020, 37(7): 847-854. doi: 10.11944/j.issn.1000-0518.2020.07.200025 shu

A Quinolinone-Based Fluorescent Probe for Rapid and Highly Selective Detection of Glutathione

  • Corresponding author: ZHANG Chenglu, zhangchenglu@lnnu.edu.cn
  • Received Date: 17 January 2020
    Revised Date: 9 March 2020
    Accepted Date: 31 March 2020

    Fund Project: the Science and Technology Project of Liaoning Education Department 2009A426Supported by the Science and Technology Project of Liaoning Education Department(No.2009A426)

Figures(6)

  • In order to recognize small-molecule biothiols selectively, quinolinone was used as a fluorophore. Since thiol molecules can easily break the Se—N bond, a new fluorescent probe (E)-N-(4-methyl-2-oxo-1, 2-dihydroquinolin-7-yl)-3-(5-((4-(3-oxobenzo[d][1, 2]selenazol-2(3H)-yl)phenyl)thio)-1, 3, 4-oxadiazol-2-yl)acrylamide (MNQ) was designed and synthesized by splicing quinolinone (E)-3-(5-mercapto-1, 3, 4-oxadiazol-2-yl)-N-(4-methyl-2-oxo-1, 2-dihydroquinolin-7-yl)acrylamide (MQ5) with ebselen 2-(4-bromophenyl)benzo[d][1, 2]selenazol-3(2H)-one (SQ6). The structure was characterized by infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR) and high-resolution mass spectrometry (HRMS), and its fluorescence properties were explored by fluorescence spectroscopy. The result shows that MNQ has obvious fluorescence quenching ability for glutathione (GSH). When other amino acids exist, the probe has good anti-interference ability, and can be used as a fluorescence quenching probe for identifying and detecting GSH. The detection limit is 2.99×10-7 mol/L, and the response time can be as low as 35 s. It has potential application as a fluorescent probe for detecting GSH.
  • 加载中
    1. [1]

      Liu Y, Lv X, Liu J. Construction of a Selective Fluorescent Probe for GSH Based on a Chloro-Functionalized Coumarin-enone Dye Platform[J]. Chem-Eur J, 2015,21(12):4747-4754. doi: 10.1002/chem.201406004

    2. [2]

      Zhang S, Ong C N, Shen H M. Critical Roles of Intracellular Thiols and Calcium in Parthenolide-Induced Apoptosis in Human Colorectal Cancer Cells[J]. Cancer Lett, 2004,208(2):0-153.  

    3. [3]

      Kristine S J, Rosa E H, Jakob R W. Kinetic and Thermodynamic Aspects of Cellular Thiol Disulfide Redox Regulation[J]. Antioxid Redox Sign, 2009,11(5):1047-1058. doi: 10.1089/ars.2008.2297

    4. [4]

      Tang B, Yin L, Wang X. A Fast-Response, Highly Sensitive and Specific Organoselenium Fluorescent Probe For Thiols and Its Application in Bioimaging[J]. Chem Commun, 2009,35:5293-5295.  

    5. [5]

      Ng C F, Schafer F Q, Buettner G R. The Rate of Cellular Hydrogen Peroxide Removal Shows Dependency on GSH:Mathematical Insight into in Vivo H2O2 and GPx Concentrations[J]. Free Radical Res Commun, 2007,41(11):1201-1211. doi: 10.1080/10715760701625075

    6. [6]

      Anna S C, Sandra G F, Hans S. A Standardized Protocol for Comparable Analysis of GSH/GSSG by UHPLC-ESI-MSMS for Human Plasma[J]. J Chromatogr B, 2019,1104:67-72. doi: 10.1016/j.jchromb.2018.11.007

    7. [7]

      Song Y L, Li J, Zhou X. Recent Progress on the Development of Glutathione (GSH) Selective Fluorescent and Colorimetric Probes[J]. Coordin Chem Rev, 2018,366:29-68. doi: 10.1016/j.ccr.2018.03.021

    8. [8]

      Hong J A, Kim M J, Eo J. A Turn-On Fluorescent Probe for Live-Cell Imaging of Biothiols[J]. Bull Korean Chem Soc, 2018,39(4):425-426. doi: 10.1002/bkcs.11429

    9. [9]

      Jennifer K N, Prithy R, Toshiro M. In Vitro and ex Vivo Uptake of Glutathione(GSH) Across the Intestinal Epithelium and Fate of Oral GSH after in Vivo Supplementation[J]. J Agric Food Chem, 2014,62(39):9499-9506. doi: 10.1021/jf503257w

    10. [10]

      Ivanov A R, Nazimov I V, Baratova L A. Qualitative and Quantitative Determination of Biologically Active Low-Molecular-Mass Thiols in Human Blood by Reversed-Phase High-Performance Liquid Chromatography with Photometry and Fluorescence Detection[J]. J Chromatogr A, 2000,895(1):167-171.  

    11. [11]

      Chen G, Zhang L, Wang J. Miniaturized Capillary Electrophoresis System with a Carbon Nanotube Microelectrode for Rapid Separation and Detection of Thiols[J]. Talanta, 2004,64(4):1018-1023. doi: 10.1016/j.talanta.2004.04.022

    12. [12]

      Narang J, Chauhan N, Jain P. Silver Nanoparticles/Multiwalled Carbon Nanotube/Polyaniline Film for Amperometric Glutathione Biosensor[J]. Int J Biolog Macromol, 2012,50(3):672-678. doi: 10.1016/j.ijbiomac.2012.01.023

    13. [13]

      Yoshida M, Kamiya M, Yamasoba T. A Highly Sensitive, Cell-Membrane-Permeable Fluorescent Probe for Glutathione[J]. Bioorg Med Chem Lett, 2014,24(18):4363-4366. doi: 10.1016/j.bmcl.2014.08.033

    14. [14]

      Jhong Y, Hsieh W H, Chir J L. A Highly Selective and Turn-on Fluorescence Sensor for Detection of Cyanide[J]. J Fluoresc, 2014,24(6):1723-1726. doi: 10.1007/s10895-014-1460-6

    15. [15]

      Liu X, Li T, Wu Q. Carbon Nanodots as a Fluorescence Sensor for Rapid and Sensitive Detection of Cr(Ⅵ) and Their Multifunctional Applications[J]. Talanta, 2017,165:216-222. doi: 10.1016/j.talanta.2016.12.037

    16. [16]

      Zheng S L, Liu J W, Wu Y Y. Small-Molecule Inhibitors of Wnt Signaling Pathway:Towards Novel Anticancer Therapeutics[J]. Future Med Chem, 2015,7(18):2485-2505. doi: 10.4155/fmc.15.159

    17. [17]

      Wang H Z, Xiao M J, Zhang J Q. Studies on the Synthesis and Properties of Quinolinone-Based Fluorescent Probe[J]. Acta Sci Nat Univ Sunyatseni, 2014,53(2):94-100.  

    18. [18]

      Wu L J, Yang Y, Song R J. An Access to 1, 3-Azasiline-Fused Quinolinones via Oxidative Heteroannulation Involving Silyl C(sp3)-H Functionalization[J]. Chem Commun, 2018,54(21):1367-1370.  

    19. [19]

      Gao Z, Han B, Chen K. A Novel Single-Fluorophore-Based Ratiometric Fluorescent Probe for Direct Detection of Isocyanates in Air[J]. Chem Commun, 2017,53(46):6231-6234. doi: 10.1039/C7CC02269G

    20. [20]

      Pires M M, Chmielewski J. Fluorescence Imaging of Cellular Glutathione Using a Latent Rhodamine[J]. Org Lett, 2008,10(5):837-840. doi: 10.1021/ol702769n

    21. [21]

      Lee J H, Lim C S, Tian Y S. A Two-Photon Fluorescent Probe for Thiols in Live Cells and Tissues[J]. J Am Chem Soc, 2010,132(4):1216-1217. doi: 10.1021/ja9090676

    22. [22]

      LIU Yawei. Construction of Carbon Heterobonds and Their Application in the Synthesis of Sulfide and Quinazoline Derivatives[D]. Zhengzhou: Henan University, 2018(in Chinese). 

    23. [23]

      WANG Huizhen. Synthesis and Properties of Quinolinone Fluorescent Probes.Mianyang[D]. Mianyang: Southwest University of Science and Technology, 2014(in Chinese). 

    24. [24]

      YAN Xueming, ZHANG Hongying, ZENG Xiong. Study on Synthesis of Novel Ebselen Analogs[J]. J Univ South China(Sci Technol), 2006,20(3):88-90. doi: 10.3969/j.issn.1673-0062.2006.03.022

    25. [25]

      YAN Xueming, LU Zhiqiang, YANG Pengfei. Study on the Synthesis of 2-Phenyl-1, 2-Benzoisoselazol-3-(2H)-one[J]. Fine Chem Intermed, 2005,35(4):22-27. doi: 10.3969/j.issn.1009-9212.2005.04.008

    26. [26]

      Krishna P B, Govindasamy M. Synthesis, Characterization, and Antioxidant Activity of Some Ebselen Analogues[J]. Chem-Eur J, 2007,13:4594-4601. doi: 10.1002/chem.200601584

    27. [27]

      Samanta S, Goswami S, Ramesh A. A New Fluorogenic Probe for Solution and Intra-Cellular Sensing of Trivalent Cations in Model Human Cells[J]. Sens Actuators B, 2014,194:120-126. doi: 10.1016/j.snb.2013.12.049

    28. [28]

      Mugesh G, Sarma B K. Glutathione Peroxidase(GPx)-like Antioxidant Activity of the Organoselenium Drug Ebselen:Unexpected Complications with Thiol Exchange Reactions[J]. J Am Chem Soc, 2005,127(32):11477-11485. doi: 10.1021/ja052794t

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    3. [3]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    4. [4]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    5. [5]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    6. [6]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    7. [7]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    8. [8]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    9. [9]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    10. [10]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    11. [11]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    12. [12]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    13. [13]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    14. [14]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    15. [15]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    16. [16]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    17. [17]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    18. [18]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    19. [19]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    20. [20]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

Metrics
  • PDF Downloads(5)
  • Abstract views(1012)
  • HTML views(179)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return