Citation: YANG Zhengjun, LIU Bo, HUANG Pai, NIE Heran, ZHOU Guangyuan, ZHANG Jianfu. Effect of Pore Structures of Porous Polymer Microspheres on Catalytic Propylene Polymerization[J]. Chinese Journal of Applied Chemistry, ;2020, 37(7): 746-755. doi: 10.11944/j.issn.1000-0518.2020.07.200024 shu

Effect of Pore Structures of Porous Polymer Microspheres on Catalytic Propylene Polymerization

  • Corresponding author: LIU Bo, bliu@ciac.ac.cn ZHANG Jianfu, zhangjianfu@cust.edu.cn
  • Received Date: 17 January 2020
    Revised Date: 27 April 2020
    Accepted Date: 6 May 2020

    Fund Project: the National Natual Science Foundation of China 21704098the Science and Technology Development Project of Jilin Province, China 20180524141JHSupported by the National Natual Science Foundation of China(No.21704098) and the Science and Technology Development Project of Jilin Province, China(No.20180524141JH)

Figures(7)

  • The microporous poly(styrene-divinylbenzene) (PS-DVB) microspheres have the advantages of stable physical and chemical properties, large specific surface area, low production cost, and controllable particle sizes. It has broad application prospects in the fields of biomedicine, adsorption, separation and catalyst support. Three kinds of porous polymer microspheres (PPMs) were prepared by introducing the functional monomers acrylonitrile (AN), acrylamide (AA) and N-vinyl carbazole (VC). The results show that, on the one hand, polypropylenes are microspheres and nanofibers due to the template effect and confined effect. On the other hand, the load of Ti and Mg in the Ziegler-Natta catalyst supported by PPM-AN increases with the increase of specific surface area of the support. The results of propylene polymerization show that under the same pressure, the overall trend of molecular mass (Mw), molecular mass distribution (PDI) and isotacticity increase with the increase of pore size because the propylene monomer is restricted by PPM-AN support.
  • 加载中
    1. [1]

      Zhao S M, Chen F H, Zhao C Z. Interpenetrating Network Formation in Isotactic Polypropylene/Graphene Composites[J]. Polymer, 2013,54(14):3680-3690. doi: 10.1016/j.polymer.2013.04.059

    2. [2]

      Tioni E, Monteil V, McKenna T. Morphological Interpretation of the Evolution of the Thermal Properties of Polyethylene During the Fragmentation of Silica Supported Metallocene Catalysts[J]. Macromolecules, 2013,46(2):335-343. doi: 10.1021/ma302150v

    3. [3]

      Shi J J, Dong J Y. Simultaneous Cross-linking as a Way to Control Physical Growth of Random Ethylene Propylene Copolymer During Formation of High-Impact Polypropylene[J]. Polymer, 2016,85:10-18. doi: 10.1016/j.polymer.2016.01.024

    4. [4]

      Zhang Z, Jiang B Y, Zhang B. Deactivation Effect Caused by Catalyst-Cocatalyst Pre-contact in Propylene Polymerization with MgCl2-Supported Ziegler-Natta Catalyst[J]. Chinese J Polym Sci, 2019,37(10):1023-1030. doi: 10.1007/s10118-019-2319-8

    5. [5]

      CHEN Yue, XIA Xianzhi. Kinetics of Propylene Polymerization with Ziegler-Natta Catalysts[J]. China Synth Resin Plast, 2017,34(2):28-33. doi: 10.3969/j.issn.1002-1396.2017.02.008

    6. [6]

      Boaen N K, Hillmyer M A. Post-polymerization Functionalization of Polyolefins[J]. Chem Soc Rev, 2005,34(3):267-275. doi: 10.1039/b311405h

    7. [7]

      GAO Mingyu. Research Process and Application of Metallocene Polypropylene[J]. Petrochem Technol, 2019,48(7):746-752. doi: 10.3969/j.issn.1000-8144.2019.07.015

    8. [8]

      García P A, Gómez E J M, Pérez E. Isotactic Poly(propylene-co-1-pentene-co-1-hexene) Terpolymers:Synthesis, Molecular Characterization, and Evidence of the Trigonal Polymorph[J]. J Polym Sci, Part A:Polym Chem, 2013,51(15):3251-3259. doi: 10.1002/pola.26717

    9. [9]

      Roscoe S B, Frechet J M, Walzer J F. Polyolefin Spheres from Metallocenes Supported on Noninteracting Polystyrene[J]. Science, 1998,280(5361):270-273. doi: 10.1126/science.280.5361.270

    10. [10]

      Gahleitner M, Tranninger C, Doshev P. Heterophasic Copolymers of Polypropylene:Development, Design Principles, and Future Challenges[J]. J Appl Polym Sci, 2013,130(5):3028-3037. doi: 10.1002/app.39626

    11. [11]

      Wang J, Wang L, Yu H J. Recent Progress in Ethylene Polymerization Catalyzed by Ni and Pd Catalysts[J]. Eur J Inorg Chem, 2018,13:1450-1468.  

    12. [12]

      DONG Jinyong, NIU Hui. Research and Development of New-Generation Functional Ziegler-Natta Catalysts for Propylene Polymerization[J]. Petrochem Technol, 2010,39(2):116-124.  

    13. [13]

      ZHOU Qian, QIN Yawei, LI Huayi. Progress in Ziegler-Natta Catalyst Support Technology[J]. Chinese Polym Bull, 2016(9):126-139.  

    14. [14]

      Bertrand H, Cécile B, Éric C. Polymer Support of "Single-site" Catalysts for Heterogeneous Olefin Polymerization[J]. Prog Polym Sci, 2011,36:89-126. doi: 10.1016/j.progpolymsci.2010.09.002

    15. [15]

      Wang X, Xu R W, Zhu B C. Synthesis and Characterization of Functional Porous Organic Polymers as Efficient Metallocene Catalyst Supports[J]. New J Chem, 2016,40(10):8324-8333. doi: 10.1039/C6NJ01686C

    16. [16]

      CHEN Zhikang, MAO Yuanhong, CAO Yucai. Metallocene Catalyst Systems and Control over the Propylene Polymerization[J]. Chinese J Org Chem, 2018,38:2937-2992.  

    17. [17]

      XIAO Xian, FU Zhisheng, FAN Zhiqiang. Progress in Immobilization Mechanisms of Metallocene Catalysts for Olefin Polymerization[J]. China Synth Resin Plast, 2015,32(1):76-79. doi: 10.3969/j.issn.1002-1396.2015.01.021

    18. [18]

      Comotti A, Bracco S, Beretta M. Confined Polymerization in Highly Ordered Mesoporous Organosilicas[J]. Chem Eur J, 2015,21(50):18209-18217. doi: 10.1002/chem.201503553

    19. [19]

      AN Liancai, HAN Jiufang, ZHANG Yinghui. Research and Application Progress on Porous Organic Polymers for Adsorption and Separation of Organic Pollutants in Water System[J]. Chinese J Appl Chem, 2018,35(9):1019-1025.  

    20. [20]

      Sun Q, Dai Z F, Meng X J. Porous Polymer Catalysts with Hierarchical Structures[J]. Chem Soc Rev, 2015,44(17):6018-6034. doi: 10.1039/C5CS00198F

    21. [21]

      BAO Jianmin, YAN Zhiying, LI Youxin. Microporous Poly(Styrene-Divinylbenzene) Microspheres:Preparation, Modification and Application[J]. Mater Rep, 2018,32(9):3060-3067.

    22. [22]

      Parminder K, Joseph T H, SonBinh T. Porous Organic Polymers in Catalysis:Opportunities and Challenges[J]. ACS Catal, 2011,1(7):819-835. doi: 10.1021/cs200131g

    23. [23]

      Yu B, Cong H L, Peng Q H. Current Status and Future Developments in Preparation and Application of Nonspherical Polymer Particles[J]. Adv Colloid Interface Sci, 2018,256:126-151. doi: 10.1016/j.cis.2018.04.010

    24. [24]

      Xu Y, Liu X N, Zhou J. Simultaneous Determination of β-Methy-β-nitrostyrolene and Its Related Substances by PS-DVB Chromatographic Column and the Structural Analysis of Its Photo-isomerization Product[J]. Anal Methods, 2014,6(20):8284-8290. doi: 10.1039/C4AY01285B

    25. [25]

      Xu Y H, Jin S B, Xu H. Conjugated Microporous Polymers:Design, Synthesis and Application[J]. Chem Soc Rev, 2013,42(20):8012-8031. doi: 10.1039/c3cs60160a

    26. [26]

      Liu J G, Dong J Y, Cui N N. Supporting a Metallocene on Functional Polypropylene Granules for Slurry Ethylene Polymerization[J]. Macromolecules, 2004,37(17):6275-6282. doi: 10.1021/ma049311a

    27. [27]

      WANG Kui, LEI Jinhua, NIE Heran. Olefin Polymerization in Confined Space[J]. Prog Chem, 2015,27(12):1764-1773. doi: 10.7536/PC150621

    28. [28]

      Wang K, Lei J H, Zhou G Y. Confined Polymerization:Catalyzed Synthesis of High Tm, Nanofibrous Polyethylene Within Porous Polymer Microspheres[J]. RSC Adv, 2015,5(87):70703-70706. doi: 10.1039/C5RA13945G

    29. [29]

      Summers G J, Waware U S, Maduwa M R. Conducting Polyaniline Nanorods Doped with Aromatic Carboxyl Chain and Functionalized Polystyrene[J]. Synth Met, 2015,209(1):251-261.  

    30. [30]

      Jacek J, Mietek J. 2D-NLDFT Adsorption Models for Porous Oxides with Corrugated Cylindrical Pores[J]. J Colloid Interface Sci, 2018,532:588-597. doi: 10.1016/j.jcis.2018.08.021

    31. [31]

      Jacek J, James P O. 2D-NLDFT Adsorption Models for Carbon Slit-shaped Pores with Surface Energetical Heterogeneity and Geometrical Corrugation[J]. Carbon, 2013,55:70-80. doi: 10.1016/j.carbon.2012.12.011

    32. [32]

      Lei J H, Li D L, Wang H H. Porous Polyethylene Spheres with Nanofiber Structure from Ziegler-Natta Catalyst Supported on Porous Polymer Particles[J]. Polymer, 2011,52(3):602-605.  

    33. [33]

      LI Cong, LIU Lewen, JIANG Xiangxin. The Application of Infrared Spectroscopy in the Analysis of Polypropylene Isotacticity[J]. Guangzhou Chem Ind, 2013,41(4):135-137. doi: 10.3969/j.issn.1001-9677.2013.04.050

    34. [34]

      Burfield D R, Loi P T. The Use of Infrared Spectroscopy for Determination of Polypropylene Stereoregularity[J]. J Appl Polym Sci, 1988,36(2):279-293. doi: 10.1002/app.1988.070360203

  • 加载中
    1. [1]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    2. [2]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    3. [3]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    4. [4]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    5. [5]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    6. [6]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    7. [7]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    8. [8]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    9. [9]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    10. [10]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    11. [11]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    12. [12]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    13. [13]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    14. [14]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    15. [15]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    16. [16]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    17. [17]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    18. [18]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    19. [19]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    20. [20]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

Metrics
  • PDF Downloads(9)
  • Abstract views(1225)
  • HTML views(282)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return