Citation: ZHOU Zhuoyu, SUI Xiaochen, XIA Yongmei. Enzymatic Synthesis of Rubusoside and Its Inhibition on Liver and Gastrointestinal Cells[J]. Chinese Journal of Applied Chemistry, ;2020, 37(7): 785-792. doi: 10.11944/j.issn.1000-0518.2020.07.200020 shu

Enzymatic Synthesis of Rubusoside and Its Inhibition on Liver and Gastrointestinal Cells

  • Corresponding author: XIA Yongmei, ymxia@jiangnan.edu.cn
  • Received Date: 16 January 2020
    Revised Date: 30 March 2020
    Accepted Date: 11 May 2020

    Fund Project: the National Industry Technology and Engineering Double First-Class Discipline Program LITE2018-03the National Natural Science Foundation of Chin 31371837the National Natural Science Foundation of Chin 31772017Supported by the National Natural Science Foundation of China(No.31772017, No.31371837.), the National Industry Technology and Engineering Double First-Class Discipline Program(No.LITE2018-03)

Figures(7)

  • Rubusoside is a rare natural sweetener. In this experiment, a β-glucosidase from Aspergillus niger was screened from some glycosidases, which was used to proficiently produce rubusoside from stevioside. The optimum rubusoside yield and the stevioside conversion reach 90.4% and 98.8% in 12 h, respectively. Subsequently, the cytotoxicity of rubusoside on human gastrointestinal and liver cells was investigated, which includes 3 normal and 11 cancer cell lines. At a mass concentration of 250 μg/mL, rubusoside is not toxic to the normal cells, and its inhibition rate of rubusoside on BEL-7404 is 30% of that 5-fluorouracil proceeded.
  • 加载中
    1. [1]

      Ohtani K, Aikawa Y, Kasai R. Minor Diterpene Glycosides from Sweet Leaves of Rubus suavissimus[J]. Phytochemistry, 1992,31(5):1553-1559.  

    2. [2]

      Koh G Y, Chou G, Liu Z. Purification of a Water Extract of Chinese Sweet Tea Plant (Rubus suavissimus, S. Lee) by Alcohol Precipitation[J]. J Agric Food Chem, 2009,57(11):5000-5006.  

    3. [3]

      Uhler B, Yang Z. Rebaudioside A and Other Unreported Steviol Glycoside Isomers Found in the Sweet Tea (Rubus suavissimis) Leaf[J]. Phytochem Lett, 2018,28:93-97.  

    4. [4]

      Ko J A, Ryu Y B, Kwon H J. Characterization of a Novel Steviol-Producing β-Glucosidase from Penicillium Decumbens and Optimal Production of the Steviol[J]. Appl Microbiol Biotechol, 2013,97(18):8151-8161.  

    5. [5]

      Ko J A, Kim Y M, Ryu Y B. Mass Production of Rubusoside Using a Novel Stevioside-Specific beta-Glucosidase from Aspergillus aculeatus[J]. J Agric Food Chem, 2012,60(24):6210-6216.  

    6. [6]

      Wang Z L, Wang J P, Jiang M H. Selective Production of Rubusoside from Stevioside by Using the Sophorose Activity of beta-Glucosidase from Streptomyces sp GXT6[J]. Appl Microbiol Biotechnol, 2015,99(22):9663-9674.  

    7. [7]

      Lan Q, Tang T T, Yin Y. Highly Specific Sophorose beta-Glucosidase from Sphingomonas elodea ATCC 31461 for the Efficient Conversion of Stevioside to Rubusoside[J]. Food Chem, 2019,295:563-568.  

    8. [8]

      Wan H D, Tao G J, Kim D. Enzymatic Preparation of a Natural Sweetener Rubusoside from Specific Hydrolysis of Stevioside with beta-Galactosidase from Aspergillus sp.[J]. J Mol Catal B-Enzym, 2012,82:12-17.  

    9. [9]

      Udompaisarn S, Arthan D, Somana J. Development and Validation of an Enzymatic Method to Determine Stevioside Content from Stevia rebaudiana[J]. J Agric Food Chem, 2017,65(15):3223-3229.  

    10. [10]

      Nguyen T T H, Jung S J, Kang H K. Production of Rubusoside from Stevioside by Using a Thermostable Lactase from Thermus thermophilus and Solubility Enhancement of Liquiritin and Teniposide[J]. Enzyme Microb Technol, 2014,64/65(7):38-43.  

    11. [11]

      Sugimoto N, Sato K, Liu H M. Analysis of Rubusoside and Related Compounds in Tenryocha Extract Sweetener[J]. J Food Hyg Soc Jpn, 2002,43(4):250-253.  

    12. [12]

      Chen J M, Zhang J, Xia Y M. The Natural Sweetener Metabolite Steviol Inhibits the Proliferation of Human Osteosarcoma U2OS Cell Line[J]. Oncol Lett, 2018,15(4):5250-5256.  

    13. [13]

      Chen J M, Ding L, Sui X C. Production of a Bioactive Sweetener Steviolbioside via Specific Hydrolyzing Ester Linkage of Stevioside with a beta-Galactosidase[J]. Food Chem, 2016,196:155-160.  

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    3. [3]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    4. [4]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    5. [5]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    6. [6]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    7. [7]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    8. [8]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    9. [9]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    10. [10]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    11. [11]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    15. [15]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(3)
  • Abstract views(788)
  • HTML views(112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return