Citation: ZHANG Jingjing, XIAO Xin, SHI Dongjian, CHEN Mingqing. Morphology Regulation of Polydopamine Self-polymerization on the Surface of Strongly Electronegative Microspheres[J]. Chinese Journal of Applied Chemistry, ;2020, 37(7): 756-763. doi: 10.11944/j.issn.1000-0518.2020.07.200016 shu

Morphology Regulation of Polydopamine Self-polymerization on the Surface of Strongly Electronegative Microspheres

  • Corresponding author: CHEN Mingqing, mqchen@jiangnan.edu.cn
  • Received Date: 14 January 2020
    Revised Date: 16 March 2020
    Accepted Date: 23 April 2020

    Fund Project: the National Natural Science Foundation of China 21571084Supported by the National Natural Science Foundation of China(No.21571084), and the National Light Industry Technology and Engineering First-class Subject Independent Project(No.2018-19)the National Light Industry Technology and Engineering First-class Subject Independent Project 2018-19

Figures(6)

  • Dopamine (DA) has been proved to be able to oxidize and polymerize into polydopamine (PDA) on the surface of a variety of materials, however, the mechanism of the DA polymerization on strongly electronegative surfaces and the formed morphologies of PDA are not clear yet. In order to investigate the influence of the surface electronegativity and oxidation conditions on the rate of the oxidized self-polymerization and the morphology of the PDA layer, herein, polystyrene/polyacrylic acid nanoparticles (PS/PAA NPs) with PS as the core and PAA as the shell were prepared by soap-free emulsion polymerization. Then, PDA was coated on the surface of the PS/PAA NPs and the effect of different pH buffers, reaction time and the amount of DA on the polymerization process and the PDA morphologies were investigated. The morphology and size of the nanoparticles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Zeta potential. The results show that small PDA NPs are polymerized on the PS/PAA NPs surface to form the raspberry structure in the Tris buffer solution with a pH of 8.5, and the mass ratio of DA to PS/PAA NPs is 1:1. The formed PDA NPs become bigger with higher DA contents and longer reaction time. When DA is excess, it eventually forms a uniform PDA shell on the surface of microspheres. Zeta potential results show that the raspberry-like structure is formed due to the balance between electrostatic interaction and charge repulsion in the surface polymerization of PAA. A larger amount of DA and a longer reaction time result in the reduction of charge repulsion to form a dense uniform PDA shell layer. In addition, uniform PDA shell layers form on the surface of PS/SDS microspheres with less electronegativity and nonionic PS microspheres. Therefore, the PDA deposition on the surface of the anionic materials is influenced by the negative value of the surface.
  • 加载中
    1. [1]

      Liu Y, Ai K, Lu L. Polydopamine and Its Derivative Materials:Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields[J]. Chem Rev, 2014,114(9):5057-5115. doi: 10.1021/cr400407a

    2. [2]

      Liu Q, Yu B, Ye W. Highly Selective Uptake and Release of Charged Molecules by pH-Responsive Polydopamine Microcapsules[J]. Macromol Biosci, 2011,11(9):1227-1234. doi: 10.1002/mabi.201100061

    3. [3]

      ZHANG Zhuying, CHEN Jing, YU Jialei. Preparation and Properties of Polydopamine and Alginate Porous Complex Scaffolds[J]. Chinese J Appl Chem, 2018,35(6):665-673.  

    4. [4]

      WANG He, LUO Jing, LI Xiaojie. Efficient Preparation of Polydopamine Nanoparticles by Precipitation[J]. Chinese J Appl Chem, 2019,36(2):155-160.  

    5. [5]

      Zhang M, Zhang L, Chen Y. Precise Synthesis of Unique Polydopamine/Mesoporous Calcium Phosphate Hollow Janus Nanoparticles for Imaging-Guided Chemo-Photothermal Synergistic Therapy[J]. Chem Sci, 2017,8(12):8067-8077. doi: 10.1039/C7SC03521G

    6. [6]

      Yu X, Fan H, Wang L. Formation of Polydopamine Nanofibers with the Aid of Folic Acid[J]. Angew Chem Int Ed, 2014,53(46):12600-12604.  

    7. [7]

      Ma S, Qi Y X, Jiang X Q. Selective and Sensitive Monitoring of Cerebral Antioxidants Based on the Dye-Labeled DNA/Polydopamine Conjugates[J]. Anal Chem, 2016,88(23):11647-11653. doi: 10.1021/acs.analchem.6b03216

    8. [8]

      Li H, Jia Y, Wang A. Self-Assembly of Hierarchical Nanostructures from Dopamine and Polyoxometalate for Oral Drug Delivery[J]. Chemistry, 2014,20(2):499-504. doi: 10.1002/chem.201302660

    9. [9]

      Mateescu M, Metz-Boutigue M H, Bertani P. Polyelectrolytes to Produce Nanosized Polydopamine[J]. J Colloid Interface Sci, 2016,469:184-190. doi: 10.1016/j.jcis.2016.02.023

    10. [10]

      Schneider A, Hemmerle J, Allais M. Boric Acid as an Efficient Agent for the Control of Polydopamine Self-assembly and Surface Properties[J]. ACS Appl Mater Interfaces, 2018,10(9):7574-7580. doi: 10.1021/acsami.7b08356

    11. [11]

      Kohri M, Nannichi Y, Kohma H. Size Control of Polydopamine Nodules Formed on Polystyrene Particles During Dopamine Polymerization with Carboxylic Acid-Containing Compounds for the Fabrication of Raspberry-Like Particles[J]. Colloids Surf A:Physicochem Eng Asp, 2014,449:114-120. doi: 10.1016/j.colsurfa.2014.02.049

    12. [12]

      Haeshin, Shara, Dellatore. Mussel-Inspired Surface Chemistry for Multifunctional Coatings[J]. Science, 2007,318(5849):426-430. doi: 10.1126/science.1147241

    13. [13]

      Ball V, Del Frari D, Toniazzo V. Kinetics of Polydopamine Film Deposition as a Function of pH and Dopamine Concentration:Insights in the Polydopamine Deposition Mechanism[J]. J Colloid Interface Sci, 2012,386(1):366-372. doi: 10.1016/j.jcis.2012.07.030

    14. [14]

      Della Vecchia N F, Luchini A, Napolitano A. Tris Buffer Modulates Polydopamine Growth, Aggregation, and Paramagnetic Properties[J]. Langmuir, 2014,30(32):9811-9818. doi: 10.1021/la501560z

    15. [15]

      Ponzio F, Barth s J, Bour J. Oxidant Control of Polydopamine Surface Chemistry in Acids:A Mechanism-Based Entry to Superhydrophilic-Superoleophobic Coatings[J]. Chem Mater, 2016,28(13):4697-4705. doi: 10.1021/acs.chemmater.6b01587

    16. [16]

      Wei Q, Zhang F, Li J. Oxidant-Induced Dopamine Polymerization for Multifunctional Coatings[J]. Polym Chem, 2010,1(9):1430-1433. doi: 10.1039/c0py00215a

    17. [17]

      Chen M Q, Serizawa T, Kishida A. Graft Copolymers Having Hydrophobic Backbone and Hydrophilic Branches.XXIII.Particle Size Control of Poly(ethylene glycol)-Coated Polystyrene Nanoparticles Prepared by Macromonomer Method[J]. J Polym Sci Part A:Polym Chem, 1999,37:2155-2166. doi: 10.1002/(SICI)1099-0518(19990701)37:13<2155::AID-POLA31>3.0.CO;2-G

  • 加载中
    1. [1]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    2. [2]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    3. [3]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    6. [6]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    7. [7]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    8. [8]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    9. [9]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    10. [10]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    11. [11]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    12. [12]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    13. [13]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    14. [14]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    15. [15]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    16. [16]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    17. [17]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    18. [18]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    19. [19]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    20. [20]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

Metrics
  • PDF Downloads(91)
  • Abstract views(6207)
  • HTML views(3012)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return