Citation: XU Bing, WU Zhongkui, MIAO Linhui, WANG Zhenkun, DAI Siyu, ZHU Zhe. Allylation of Carbon Nanotubes Improves the Properties of Acrylate Pressure Sensitive Adhesive[J]. Chinese Journal of Applied Chemistry, ;2020, 37(7): 778-784. doi: 10.11944/j.issn.1000-0518.2020.07.200012 shu

Allylation of Carbon Nanotubes Improves the Properties of Acrylate Pressure Sensitive Adhesive

  • Corresponding author: WU Zhongkui, zhongkuiwu@163.com
  • Received Date: 10 January 2020
    Revised Date: 9 April 2020
    Accepted Date: 24 April 2020

    Fund Project: Supported by the National Natural Science Foundation of China(No.50973087, No.51173141), and the Technology Project of State Grid Corporation of China(No.SGKJJSKF[2008] no.487)the Technology Project of State Grid Corporation of China SGKJJSKF[2008] no.487the National Natural Science Foundation of China 51173141the National Natural Science Foundation of China 50973087

Figures(8)

  • A silane coupling agent 3-methacryloxypropyltrimethoxysilane (KH570) was used to modify multi-walled carbon nanotubes (MWNTs) to graft allyl functional groups on the surface, and in situ polymerization with acrylate monomers was performed to prepare a high temperature-resistant acrylate pressure sensitive adhesive (PSA). The structure and properties of MWNTs and PSA were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The effects of the mass fraction of modified MWNTs on PSA's heat resistance and adhesive properties were studied. The results show that when the mass fraction of the modified MWNTs is 1.5%, the heat resistance and adhesive properties of the modified PSA are the best. The thermal decomposition temperature increases from 360 to 382 ℃, the heat resistant temperature increases from 80 to 155 ℃, and the initial adhesion, the holding power and the 180° peel increase from ball No.12, 2 h and 13.66 N/25 mm to ball No.17, 27 h and 17.34 N/25 mm, respectively.
  • 加载中
    1. [1]

      Czech Z, Kabatc J, Kowalczyk A. Application of Selected 2-Methylbenzothiazoles as Cationic Photoreactive Crosslinkers for Pressure-Sensitive Adhesives Based on Acrylics[J]. Int J Adhes Adhes, 2015,58:1-6. doi: 10.1016/j.ijadhadh.2014.12.001

    2. [2]

      Kemppainen J, Mattila T, Paulasto-Krockel M. Adhesion Evaluation of the Heat Resistant Pressure Sensitive Adhesives at Elevated Temperatures for MEMS Gyroscope Testing[C]//International Symposium on Advanced Packaging Materials. IEEE, 2011: 363-372.

    3. [3]

      Murakami H, Futashima K, Nanchi M. Unique Thermal Behavior of Acrylic PSAs Bearing Long Alkyl Side Groups and Crosslinked by Aluminum Chelate[J]. Eur Polym J, 2011,47(3):378-384. doi: 10.1016/j.eurpolymj.2010.12.012

    4. [4]

      Czech Z. Development of Solvent-free Pressure-Sensitive Adhesive Acrylics[J]. Int J Adhes Adhes, 2004,24(2):119-125.  

    5. [5]

      Shamsabadi M K, Moghbeli M R. Cellulose Nanocrystals(CNCs) Reinforced Acrylic Pressure-Sensitive Adhesives(PSAs) Prepared via Miniemulsion Polymerization[J]. Int J Adhes Adhes, 2017,78:155-166. doi: 10.1016/j.ijadhadh.2017.06.024

    6. [6]

      LU Bin, CHEN Jian, TAO Yunfeng. Development Status and Prospects of Solvent Acrylic Pressure Sensitive Adhesives[J]. Autom Appl, 2008(4):28-30.  

    7. [7]

      LIU Wencang, WANG Lei. Effect of Cross-linking Method on Properties of Acrylic Pressure-Sensitive Adhesive[J]. Huaxue Yu Nianhe, 2016,37(5):339-342.  

    8. [8]

      LIU Kang. Research Progress of Inorganic Nanomaterial Modified Polyacrylate Pressure-Sensitive Adhesive[J]. China Adhes, 2015,24(7):43-48.  

    9. [9]

      Czech Z. New Copolymerizable Photoinitiators for Radiation Curing of Acrylic PSA[J]. Int J Adhes Adhes, 2007,27(3):195-199.  

    10. [10]

      Kajtna J, Sebenik U. Microsphere Pressure Sensitive Adhesives-Acrylic Polymer/Montmorillonite Clay Nanocomposite Materials[J]. Int J Adhes Adhes, 2009,29(5):543-550. doi: 10.1016/j.ijadhadh.2009.01.001

    11. [11]

      YANG Junqing, WEI Zhong, LI Hongbo. Study on the Gas Sensitivity of Functionalized Single-Walled Carbon Nanotubes[J]. J Wuhan Univ Technol, 2012(4):11-13.  

    12. [12]

      ZHANG Lili, DING Huimin, ZHANG Jitang. Thermal Conductivity and Flame Retardancy of Carbon Nanotube Modified Epoxy Resin[J]. Chinese J Appl Chem, 2017,34(1):46-53.  

    13. [13]

      GU Jing. Study on High Temperature Resistant Acrylic Pressure Sensitive Adhesive[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese). 

    14. [14]

      ZHANG Xiaoyong. Study on High Temperature Resistant Solvent Acrylic Pressure Sensitive Adhesive[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese). 

    15. [15]

      WANG Guanhui. Study on Modification and Application of Silicone Pressure Sensitive Adhesive[D]. Harbin: Harbin University of Science and Technology, 2011(in Chinese). 

    16. [16]

      ZHONG Hong, LIU Zhuolin, QIU Yanping. Preparation of Solvent-based High-Temperature and Electrolyte-Resistant Acrylate Pressure-Sensitive Adhesive Tape[J]. Adhesion, 2017(10):55-58. doi: 10.3969/j.issn.1001-5922.2017.10.008

    17. [17]

      TANG Xiaoxiang, ZOU Wenzhong, WANG Fuxin. Evaluation of Heat Resistance of Pressure-sensitive Adhesive Tape[C]//Proceedings of the 2nd Asian Regional Adhesive Conference. Guangzhou: Asian Regional Adhesives Conference, 2009-02: 259-262(in Chinese).

    18. [18]

      Lu X, Cao G, Niu Z. Viscoelastic and Adhesive Properties of Single-Component Thermo-Resistant Acrylic Pressure Sensitive Adhesives[J]. J Appl Polym Sci, 2014,131(7):1-10.  

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    3. [3]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    4. [4]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    5. [5]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    6. [6]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    7. [7]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    8. [8]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    9. [9]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    10. [10]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    11. [11]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    12. [12]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    13. [13]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    14. [14]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    15. [15]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    16. [16]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    17. [17]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    18. [18]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    19. [19]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    20. [20]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

Metrics
  • PDF Downloads(9)
  • Abstract views(1379)
  • HTML views(417)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return