Citation: ZHANG Yanhui, WANG Lin, MUSLIM Arzugul, LAN Haidie. Influence of the Core Forming Block Length of Polystyrene-b-Poly(acrylic acid) Template on the Size and Properties of Polyaniline[J]. Chinese Journal of Applied Chemistry, ;2020, 37(7): 764-771. doi: 10.11944/j.issn.1000-0518.2020.07.190360 shu

Influence of the Core Forming Block Length of Polystyrene-b-Poly(acrylic acid) Template on the Size and Properties of Polyaniline

  • Corresponding author: MUSLIM Arzugul, arzu_hma@sina.com
  • Received Date: 30 December 2019
    Revised Date: 10 March 2020
    Accepted Date: 24 April 2020

    Fund Project: Supported by the National Natural Science Foundation of China(No.51763023), and the Scientific Research Plan for Universities of Xinjiang(No.XJEDU2017S028)the Scientific Research Plan for Universities of Xinjiang XJEDU2017S028the National Natural Science Foundation of China 51763023

Figures(8)

  • Use of amphiphilic block copolymers as templates is one of the effective methods to construct conducting polymer nanostructures and adjust their morphologies and sizes. The change of the length of core-forming block has a significant effect on their micellization behavior, and then changes the morphology and size of conducting polymers limited by their micelle morphology. The change of morphology and size will inevitably lead to the change of electrochemical properties of conducting polymers. In this paper, the morphology and size of polyaniline (PANI) were controlled and its electrochemical performance was optimized by block copolymer template induction. Polystyrene-b-poly(acrylic acid) (PSx-b-PAA70, x=38, 64, 101) was successfully synthesized by reversible addition-fragmentation chain transfer radical polymerization (RAFT) and its self-assembled micelles were used as templates to prepare PANI. When the length of core forming block is shorter, the PANI shows rod-like particles with diameters 100~200 nm. When x=101, PANI presents spatial network structure and has the highest discharge specific capacitance. When the current density is 1 A/g, its discharge specific capacity can reach 386.71 F/g.
  • 加载中
    1. [1]

      Gibson T J, Peter S, Mcdaid W J. Single-Domain Antibody-Functionalized pH-Responsive Amphiphilic Block Copolymer Nanoparticles for Epidermal Growth Factor Receptor Targeted Cancer Therapy[J]. ACS Macro Lett, 2018,7(8):1010-1015. doi: 10.1021/acsmacrolett.8b00461

    2. [2]

      Lü J H, Yu Y, Gao J F. Thermo-Responsive Amphiphilic Block Copolymers Stablilized Gold Nanoparticles:Synthesis and High Catalytic Properties[J]. Langmuir, 2018,34(28):8205-8214. doi: 10.1021/acs.langmuir.8b00414

    3. [3]

      Park S H, Ahn Y, Jang M. Effects of Methacrylate Based Amphiphilic Block Copolymer Additives on Ultra Filtration PVDF Membrane Formation[J]. Sep Purif Technol, 2018,202:34-44. doi: 10.1016/j.seppur.2018.03.018

    4. [4]

      Li Z J, Sun J J, Huang Y X. A Nanomicellar Prodrug Carrier Based on Ibuprofen-Conjugated Polymer for Co-delivery of Doxorubicin[J]. Front Pharmacol, 2018,9:781-792. doi: 10.3389/fphar.2018.00781

    5. [5]

      Yoo S I, Sohn B H, Wang C Z. Localized Synthesis of Polypyrrole in the Nanopattern of Monolayer Films of Diblock Copolymer Micelles[J]. Langmuir, 2004,20:10734-10736. doi: 10.1021/la048171v

    6. [6]

      Yin Z G, Zheng Q D. Controlled Synthesis and Energy Application of One-Dimensional Conducting Polymer Nanostructures:An Overview[J]. J Phys Chem B, 2010,114:1314-1324. doi: 10.1021/jp910636s

    7. [7]

      DONG Jianhua. The Frontier and Development of Polymer Science[M]. Beijing:Science Press, 2006:516(in Chinese).

    8. [8]

      Zhao Z X, Muslim A, Abdunazar A. Preparation of Polybenzidine Submicrorods with Controllable Morphology Using Poly(ethylene oxide)-b-Polystyrene as a Template and Its Electrochemical Properties[J]. J Macromol Sci A, 2017,54(10):727-734. doi: 10.1080/10601325.2017.1332462

    9. [9]

      Bucholz T, Sun Y M, Loo Y L. Near-Monodispersed Polyaniline Particles Through Template Synthesis and Simultaneous Doping with Diblock Copolymers of PMA and PAAMPSA[J]. J Mater Chem, 2008,18:5835-5842. doi: 10.1039/b810849h

    10. [10]

      Benaglia M, Rizzardo E, Alberti A. Searching for More Effective Agents and Conditions for the RAFT Polymerization of MMA:Influence of Dithioester Substituents, Solvent, and Temperature[J]. Macromolecules, 2005,38(8):3129-3140. doi: 10.1021/ma0480650

    11. [11]

      ZHU Hui, LIU Shiyong, PAN Quanming. Synthesis of Amphiphilic Block Copolymer Poly(styrene-b-acrylic acid) by Atom Transfer Radical Polymerization and Its Micellization[J]. Chem J Chinese Univ, 2002,23(1):138-142. doi: 10.3321/j.issn:0251-0790.2002.01.026

    12. [12]

      SUN Chunhui, CAO Xia, FU Peng. Synthesis of Block Copolymer Poly(ε-Caprolactone)4-b-Poly(Acrylic Acid)4[J]. Polym Mater Sci Eng, 2012,28(1):41-44.  

    13. [13]

      HUA Man, YANG Wei, XUE Qiao. Study on Synthesis of Amphiphilic PS-b-PMAA and Their Micellization[J]. Acta Chim Sin, 2005,63(7):631-636. doi: 10.3321/j.issn:0567-7351.2005.07.014

    14. [14]

      Huang J, Virji S, Weiller B H. Polyaniline Nanofibers:Facile Synthesis and Chemical Sensors[J]. J Am Chem Soc, 2003,125(2):314-315. doi: 10.1021/ja028371y

    15. [15]

      Ghosh T, Ghosh R, Basak U. Candle Soot Derived Carbon Nanodot/Polyaniline Hybrid Materials Through Controlled Grafting of Polyaniline Chains for Supercapacitors[J]. J Mater Chem A, 2018,6:6476-6492. doi: 10.1039/C7TA11050B

    16. [16]

      GAO Lei, LIAO Yi, ZHANG Xiaohua. Preparation and Enhanced Electrocapacitive Properties of Polyaniline Nanothorns on the Surface of Nitrogen Doped Hollow Carbon Spheres[J]. Chem J Chinese Univ, 2013,34(12):2845-2849. doi: 10.7503/cjcu20130366

    17. [17]

      KAN Kan, FU Dong, WANG Jue. Preparation and Capacitive Performance of Interconnected Composite Nanowire Based on Polyaniline Coated Carbon Nanofiber[J]. Fine Chem, 2019,36(10):2060-2067.  

    18. [18]

      ZHAO Qiang, LV Mangeng. Synthesis of Three-Dimensional Ordered Polyaniline-Graphene Nanocomposite and Its Application for Supercapacitor Electrode[J]. Fine Chem, 2016,33(6):635-642.  

    19. [19]

      Chen W, Xia C, Rakhi R B. A General Approach toward Enhancement of Pseudocapacitive Performance of Conducting Polymers by Redox-Active Electrolytes[J]. J Power Sources, 2014,267(4):521-526.  

    20. [20]

      Liu Y, Ma Y, Guang S. Facile Fabrication of Three Dimensional Highly Ordered Structural Polyaniline-Graphene Bulk Hybrid Materials for High Performance Supercapacitor Electrodes[J]. J Mater Chem A, 2014,2:813-823. doi: 10.1039/C3TA13513F

    21. [21]

      Wang Y, Shi Z, Huang Y. Supercapacitor Devices Based on Graphene Materials[J]. J Phys Chem C, 2009,113:13103-13107. doi: 10.1021/jp902214f

  • 加载中
    1. [1]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    2. [2]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    3. [3]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    4. [4]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    5. [5]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    6. [6]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    7. [7]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    8. [8]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    9. [9]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    10. [10]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    11. [11]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    12. [12]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    13. [13]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    14. [14]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    15. [15]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    16. [16]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    17. [17]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    18. [18]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    19. [19]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    20. [20]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

Metrics
  • PDF Downloads(3)
  • Abstract views(1084)
  • HTML views(267)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return