Citation: YANG Zhengfei, CHEN Youshun, ZHANG Haojie, LIU Zhixiong, YAN Wenbin, LI Fei. Selective Extraction of Vanadium from the Fe-Bearing Acidic Solution by Method of "Depressing Extraction-Extraction"[J]. Chinese Journal of Applied Chemistry, ;2020, 37(7): 803-809. doi: 10.11944/j.issn.1000-0518.2020.07.190356 shu

Selective Extraction of Vanadium from the Fe-Bearing Acidic Solution by Method of "Depressing Extraction-Extraction"

  • Corresponding author: LI Fei, 113501005@csu.edu.cn
  • Received Date: 27 December 2019
    Revised Date: 15 April 2020
    Accepted Date: 8 May 2020

    Fund Project: Supported by the Foundation of Educational Commission of Hunan Province(No.18B320), the Foundation of the Collaborative Innovation Center of Manganese-Zinc-Vanadium Industrial Technology(the 2011 Plan of Hunan Province), the Research Startup Foundation of Jishou University(No.jsdxrcyjkyxm201701)

Figures(8)

  • The extraction of vanadium from stone coal by acid leaching has attracted much attention because of its characteristic of environment friendly and high metal yield. However, the process is seriously affected by concentrated Fe3+ in the vanadium mother solution. In this paper, a system (P507(2-ethylhexylphosphonic acid mono-(2-ethylhexyl) ester)+N235(Trioctyl/tridecylaklylamines)+sulfonated kerosene) based on the "depressing extraction-extraction" effect was proposed to separate V from Fe. The influence of various factors on the separation and enrichment of V over Fe was studied in details. Results show that P507 is responsible for extraction of Fe and V, while N235 suppresses the extraction of Fe3+. The higher the concentration of N235, the less Fe3+ is extracted. The separation efficiency of V over Fe is high in the raw solution at pH≤0.4, demonstrating the applicability of the designed "depressing extraction-extraction" mixed extractants toward concentrated acid leaching solution. When 6 mol/L ammonia is used, more than 99% of vanadium can be stripped. Under the condition of 25 ℃, V(organic phase):V(aqueous phase)=2:1 the stripping pregnant solution is obtained, in which the mass concentration of vanadium is 14.73 g/L, the mass concentration of iron is less than 0.022 g/L, and the mass ratio of vanadium to iron is more than 669.5. It is evident that the "depressing extraction-extraction" is a method of easy operation, being economic and efficient, and great industrial prospect.
  • 加载中
    1. [1]

      ZOU Liqing. The Late Vanadium Ore[J]. Land Resour Her, 2011,8(1):38-39. doi: 10.3969/j.issn.1672-5603.2011.01.016

    2. [2]

      WANG Fei, ZHANG Yimin, LIU Tao. Solvent Extraction Behavior of Vanadium from Direct Acidic Leaching and Roasting Acidic Leaching[J]. Nonferrous Met, 2014(5):30-33. doi: 10.3969/j.issn.1007-7545.2014.05.008

    3. [3]

      XUE Nannan. Research on Process Mechanism of the Intensified Leaching of Vanadium from Shale by Particle Cracking with Stress under Oxygen Pressure in Acidic System[D]. Wuhan: Wuhan University of Science and Technology, 2017(in Chinese). 

    4. [4]

      LI Dao, LIU Tao, ZHANG Yimin. Leaching Behaviour of V, Fe, Al during Vanadium Extraction from Stone Coal by Sufuric Acid Leaching[J]. Nonferrous Met, 2016(6):50-53. doi: 10.3969/j.issn.1007-7545.2016.06.014

    5. [5]

      Hu P C, Zhang Y M, Liu T. Source Separation of Vanadium over Iron from Roasted Vanadium Bearing Shale During Acid Leaching via Ferric Fluoride Surface Coating[J]. J Clean Prod, 2018,181:399-407. doi: 10.1016/j.jclepro.2018.01.226

    6. [6]

      Hong N T, Lee N, Man S. Solvent Extraction of Vanadium(Ⅴ) from Sulfate Solutions Using LIX63 and PC88A[J]. J Ind Eng Chem, 2015,31(25):118-123.

    7. [7]

      Zhang Y, Zhang T A, Dreisinger D. Chelating Extraction of Vanadium(Ⅴ) from Low pH Sulfuric Acid Solution by Mextral 973H[J]. Sep Purif Technol, 2017,190(8):123-135.

    8. [8]

      FENG Xueru, LV Guozhi, ZHANG Ting'an. Study on Separation Performance of V(Ⅳ) and Fe(Ⅲ) by P204 in Sulfuric Acid Extraction System[J]. Iron Steel Vanadium Titanium, 2017,38(2):23-30.  

    9. [9]

      ZHANG Jian, ZHU Zhaowu, LEI Ze. Preparation of Vanadium Oxalate by Solvent Extraction and Purification with P507 and Its Physicochemical Properties[J]. Chem J Chinese Univ, 2019,40(4):740-746.  

    10. [10]

      XIONG Pu, ZHANG Yimin, HUANG Jing. Separation of Vanadium and Iron in Stone Coal Acidic Leaching Solution with P507-N235 Mixed Extractant[J]. Nonferrous Met, 2016(10):36-39. doi: 10.3969/j.issn.1007-7545.2016.10.010

    11. [11]

      Liu F, Ning P G, Cao H B. Measurement and Modeling for Vanadium Extraction from the (NaVO3+H2SO4+H2O) System by Primary Amine N1923[J]. J Chem Thermodyn, 2015,80:13-21. doi: 10.1016/j.jct.2014.08.011

    12. [12]

      Yang X, Zhang Y M, Bao S X. Separation and Recovery of Vanadium from a Sulfuric-Acid Leaching Solution of Stone Coal by Solvent Extraction Using Trialkylamine[J]. Sep Purif Technol, 2016,164:49-55. doi: 10.1016/j.seppur.2016.03.021

    13. [13]

      SHANG Jiguang, SUN Guoxin. Extraction of Fe(Ⅲ) from Aluminum Chloride[J]. Chinese J Appl Chem, 2018,35(1):75-81.  

    14. [14]

      YU Shuqiu. Effects of TRPO in the Organic Phase on the Extraction of Fe(Ⅲ) from the Sulfate Solution by HDEHP[J]. Eng Chem Metall, 1987,8(4):1-6. doi: 10.3321/j.issn:1009-606X.1987.04.001

    15. [15]

      YUAN Chengye. Structure and Properties of Organophosphorus Ligands[J]. Chinese J Org Chem, 1979(1):45-56.  

    16. [16]

      Ye G H, Hu Y B, Tong X. Extraction of Vanadium from Direct Acid Leaching Solution of Clay Vanadium Ore Using Solvent Extraction with N235[J]. Hydrometallurgy, 2018,177:27-33. doi: 10.1016/j.hydromet.2018.02.004

    17. [17]

      Zhang Y, Zhang T A, Lv G Z. Synergistic Extraction of Vanadium(Ⅳ) in Sulfuric Acid Media Using a Mixture of D2EHPA and EHEHPA[J]. Hydrometallurgy, 2016,166:87-93. doi: 10.1016/j.hydromet.2016.09.003

    18. [18]

      Zhang W G, Zhang T A, Lv G Z. Thermodynamic Study on the V(Ⅴ)-P(Ⅴ)-H2O System in Acidic Leaching Solution of Vanadium-Bearing Converter Slag[J]. Sep Purif Technol, 2019,218:164-172. doi: 10.1016/j.seppur.2019.02.025

  • 加载中
    1. [1]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    2. [2]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    3. [3]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    4. [4]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    5. [5]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    6. [6]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    7. [7]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    8. [8]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    9. [9]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    10. [10]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    11. [11]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    12. [12]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    13. [13]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    14. [14]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    15. [15]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    16. [16]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    17. [17]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    18. [18]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    19. [19]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    20. [20]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

Metrics
  • PDF Downloads(17)
  • Abstract views(1225)
  • HTML views(253)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return