Citation: XU Liping, LIU Qingshi, DONG Zhichen, GUO Xingjia, DONG Wei. Simple, Fast and Accurate Detection of Ciprofloxacin Based on Fluorescence Enhancement of Nitrogen-Doped Carbon Dots[J]. Chinese Journal of Applied Chemistry, ;2020, 37(7): 830-838. doi: 10.11944/j.issn.1000-0518.2020.07.190318 shu

Simple, Fast and Accurate Detection of Ciprofloxacin Based on Fluorescence Enhancement of Nitrogen-Doped Carbon Dots

  • Corresponding author: DONG Wei, dongwei5873@126.com
  • Received Date: 26 November 2019
    Revised Date: 31 March 2020
    Accepted Date: 28 April 2020

    Fund Project: Supported by the Natural Science Foundation of Liaoning Province(No.20180550105)the Natural Science Foundation of Liaoning Province 20180550105

Figures(7)

  • Nitrogen doped fluorescence carbon dots (N-CDs) were successfully synthesized by a facile one step solid phase pyrolysis treatment using malic acid as the carbon source and ammonium phosphate as the nitrogen source. The fluorescence quantum yield of the obtained N-CDs reaches 20.7% and the N-CDs have approximately spherical morphology with an average diameter of 3.3 nm. The as prepared N-CDs were used as the fluorescent probe to detect ciprofloxacin (CIP) based on the enhancement of N-CDs fluorescence upon adding CIP. The optimal experimental mass conditions are 7.5 μg/mL of N-CDs, pH=5.91, and 5 min of incubation time for the detection of CIP. The enhancement of N-CDs fluorescence exhibits a good linear relationship with the concentration of CIP ranged from 0.39 μmol/L to 40.0 μmol/L under the optimal conditions. The linear regression equation is ΔF=1.61×107[CIP]-3.28 with a correlation coefficient R2=0.994. The detection limit and relative standard deviation (n=5) are estimated to be 0.12 mol/L and 4.2%, respectively. The interference experiments indicate that potential coexistence substances (except copper ions) have ignorable effects on the detection of CIP, and the interference of copper ions could be masked with 4% ammonium oxalate solution. Finally, the proposed sensor was successfully applied to analyze real samples with satisfactory results.
  • 加载中
    1. [1]

      Resch-Genger U, Grabolle M, Cavalierejaricot S. Quantum Dots versus Organic Dyes as Fluorescent Labels[J]. Nat Methods, 2008,5(9):763-775. doi: 10.1038/nmeth.1248

    2. [2]

      Sun W, Du Y X, Wang Y Q. Study on Fluorescence Properties of Carbogenic Nanoparticles and Their Application for the Determination of Ferrous Succinate[J]. J Lumin, 2010,130(8):1463-1469. doi: 10.1016/j.jlumin.2010.03.013

    3. [3]

      Hou J, Zhang F S, Yan X. Sensitive Detection of Biothiols and Histidine Based on the Recovered Fluorescence of the Carbon Quantum Dots-Hg(Ⅱ) System[J]. Anal Chim Acta, 2015,859:72-78.  

    4. [4]

      CHE Wangyuan, LIU Changjun, YANG Kun. Research Progress in Preparation, Property and Application of Fluorescent Carbon Dots[J]. Acta Mater Compos Sin, 2016,33(3):431-450.  

    5. [5]

      Huang S, Yang E L, Yao J D. Red Emission Nitrogen, Boron, Sulfur Co-doped Carbon Dots for "On-Off-On" Fluorescent Mode Detection of Ag+ Ions and L-Cysteine in Complex Biological Fluids and Living Cells[J]. Anal Chim Acta, 2018,1035:192-202. doi: 10.1016/j.aca.2018.06.051

    6. [6]

      Shi B F, Su Y B, Zhang L L. Nitrogen and Phosphorus Co-doped Carbon Nanodots as a Novel Fluorescent Probe for Highly Sensitive Detection of Fe3+ in Human Serum and Living Cells[J]. ACS Appl Mater Interfaces, 2016,8(17):10717-10725. doi: 10.1021/acsami.6b01325

    7. [7]

      Liu Y, Gong X J, Dong W J. Nitrogen and Phosphorus Dual-doped Carbon Dots as a Label-Free Sensor for Curcumin Determination in Real Sample and Cellular Imaging[J]. Talanta, 2018,183:61-69. doi: 10.1016/j.talanta.2018.02.060

    8. [8]

      ZHANG Xiaozhe, ZHANG Wenjun, ZHANG Zhuxing. One Step Preparation of N-Doped Carbon Dots with High Fluorescence Yield for Selective Detection of Mercury Ion[J]. Chinese J Inorg Chem, 2015,31(1):1-6.  

    9. [9]

      Huan Y, Li H, Shuang P. Nitrogen-Doped Fluorescent Carbon Dots for Highly Sensitive and Selective Detection of Tannic Acid[J]. Spectrochim Acta Part A, 2019,210:111-119. doi: 10.1016/j.saa.2018.11.029

    10. [10]

      Yang M M, Li H, Liu J. Convenient and Sensitive Detection of Norfloxacin with Fluorescent Carbon Dots[J]. J Mater Chem B, 2014,2(45):7964-7970. doi: 10.1039/C4TB01385A

    11. [11]

      Chin N X, Neu H C. Ciprofloxacin, a Quinolone Carboxylic Acid Compound Active Against Aerobic and Anaerobic Bacteria[J]. Antimicrob Agents Chemother, 1984,25(3):319-326. doi: 10.1128/AAC.25.3.319

    12. [12]

      Turiel E, Martín-Esteban A, Tadeo J L. Multiresidue Analysis of Quinolones and Fluoroquinolones in Soil by Ultrasonic-Assisted Etraction in Small Columns and HPLC-UV[J]. Anal Chim Acta, 2006,562:30-35. doi: 10.1016/j.aca.2006.01.054

    13. [13]

      Pascual-Reguera M, Parras G P, DíAz A M. Solid-Phase UV Spectrophotometric Method for Determination of Ciprofloxacin[J]. Microchem J, 2004,77(1):79-84. doi: 10.1016/j.microc.2004.01.003

    14. [14]

      Maya M T, Gonçalves N J, Silva N B. Simple High-Performance Liquid Chromatographic Assay for the Determination of Ciprofloxacin in Human Plasma with Ultraviolet Detection[J]. J Chromatogr B, 2001,755(1/2):305-309.  

    15. [15]

      Hao A J, Guo X J, Wu Q. Exploring the Interactions Between Polyethyleneimine Modified Fluorescent Carbon Dots and Bovine Serum Albumin by Spectroscopic Methods[J]. J Lumin, 2016,170:90-96. doi: 10.1016/j.jlumin.2015.10.002

    16. [16]

      Baig M M F, Chen Y C. Bright Carbon Dots as Fluorescence Sensing Agents for Bacteria and Curcumin[J]. J Colloid Interface Sci, 2017,501:341-349. doi: 10.1016/j.jcis.2017.04.045

    17. [17]

      Kundu A, Nandi S, Das P. Facile and Green Approach to Prepare Fluorescent Carbon Dots:Emergent Nanomaterial for Cell Imaging and Detection of Vitamin B2[J]. J Colloid Interface Sci, 2016,468:276-283. doi: 10.1016/j.jcis.2016.01.070

    18. [18]

      LIU Cuige, XU Yizhuang, WEI Yongju. Spectral Properties, Protonation and Fluorescence Quantum Yield of Ciprofloxacin[J]. Spectrosc Spectr Anal, 2005,25(9):1446-1450. doi: 10.3321/j.issn:1000-0593.2005.09.019

    19. [19]

      Hernández M, Aguilar C, Borrull F. Determination of Ciprofloxacin, Enrofloxacin and Flumequine in Pig Plasma Samples by Capillary Isotachophoresis-Capillary Zone Electrophoresis[J]. J Chromatogr B Anal Technol Biomed Life Sci, 2002,772(1):163-172. doi: 10.1016/S1570-0232(02)00071-5

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    3. [3]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    4. [4]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    5. [5]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    6. [6]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    7. [7]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    8. [8]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    9. [9]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    10. [10]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    11. [11]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    12. [12]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    13. [13]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    14. [14]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    15. [15]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    16. [16]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    17. [17]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    18. [18]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    19. [19]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    20. [20]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

Metrics
  • PDF Downloads(12)
  • Abstract views(1143)
  • HTML views(380)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return