Citation: ZHAO Kaichao, ZHAO Xu, YAN Xiuping. pH Reversibly Activated Asymmetric Cyanine Photosensitizer for Photodynamic Antibacterial[J]. Chinese Journal of Applied Chemistry, ;2020, 37(6): 620-626. doi: 10.11944/j.issn.1000-0518.2020.06.200092 shu

pH Reversibly Activated Asymmetric Cyanine Photosensitizer for Photodynamic Antibacterial

  • Corresponding author: ZHAO Xu, zhaoxu2017@jiangnan.edu.cn YAN Xiuping, xpyan@jiangnan.edu.cn
  • Received Date: 27 March 2020
    Revised Date: 19 April 2020
    Accepted Date: 23 April 2020

    Fund Project: Supported by the National Natural Science Foundation of China(No.21804056), the Natural Science Foundation of Jiangsu Province, China(No.BK20180581), China Postdoctoral Science Foundation(No.2018M630511), and the Fundamental Research Funds for the Central Universities(No.JUSRP11846, No.JUSRP51714B)the Fundamental Research Funds for the Central Universities JUSRP51714Bthe Natural Science Foundation of Jiangsu Province, China BK20180581the National Natural Science Foundation of China 21804056China Postdoctoral Science Foundation 2018M630511the Fundamental Research Funds for the Central Universities JUSRP11846

Figures(5)

  • The photodynamic bactericidal performance of a reversibly activated asymmetric cyanine (Acy) was studied. The results show that Acy can be specifically activated to produce singlet oxygen in the weakly acidic microenvironment of bacteria under the irradiation of 808 nm laser, and shows excellent photodynamic bactericidal effect on both E.coli and S.aureus, but has no photodynamic antibacterial effect under normal physiological condition. The specifically activated photodynamic feature of Acy effectively overcomes the shortcoming of non-specific damage to normal tissues in previous "always on" photosensitizers, making Acy promising for specific antibacteria.
  • 加载中
    1. [1]

      Zhao Z W, Yan R, Yi X. Bacteria-Activated Theranostic Nanoprobes Against Methicillin-Resistant Staphylococcus aureus Infection[J]. ACS Nano, 2017,11(5):4428-4438.  

    2. [2]

      Huang J L, Zhou J F, Zhuang J Y. Strong Near-Infrared Absorbing and Biocompatible CuS Nanoparticles for Rapid and Efficient Photothermal Ablation of Gram-Positive and -Negative Bacteria[J]. ACS Appl Mater Interfaces, 2017,9(42):36606-36614.  

    3. [3]

      WANG Yingjun, HUANG Xuelian, CHEN Junjian. Bacterial Infection-Microenvironment Responsive Polymeric Materials for the Treatment of Bacterial Infectious Diseases:A Review[J]. Mater Rev, 2019,33(1):5-15.  

    4. [4]

      ZHANG Chang, REN En, PANG Xin. Recent Advances of Nanophotosensitizers in Antibacterial Photodynamic Therapy[J]. Chinese J Lasers, 2020,47(2):0207012-1.  

    5. [5]

      Hamblin M R, Hasana T. Photodynamic Therapy:A New Antimicrobial Approach to Infectious Disease?[J]. Photochem Photobiol Sci, 2004,3(5):436-450.  

    6. [6]

      Danilo M, Lone H, Kirsten H D. Capacity of Cationic and Anionic Porphyrins to Inactivate the Potential Aquaculture Pathogen Vibrio campbellii[J]. Aquaculture, 2017,473:228-236.  

    7. [7]

      Sah U, Sharma K, Chaudhri N. Antimicrobial Photodynamic Therapy:Single-Walled Carbon Nanotube(SWCNT)-Porphyrin Conjugate for Visible Light Mediated Inactivation of Staphylococcus aureus[J]. Colloid Surf B, 2018,162:108-117.  

    8. [8]

      Mariana M, Romina C, Tomas C T. Photodynamic Inactivation of Multiresistant Bacteria(KPC) Using Zinc(Ⅱ) Phthalocyanines[J]. Bioorg Med Chem Lett, 2017,27(18):4341-4344.  

    9. [9]

      Vanesa P L, Antonio R, Juan J R. Daylight Photodynamic Therapy Using Methylene Blue to Treat Sheep with Dermatophytosis Caused by Arthroderma vanbreuseghemii[J]. Small Ruminant Res, 2017,150:97-101.  

    10. [10]

      Liu Y, Busscher H J, Zhao B R. Surface-Adaptive, Antimicrobially Loaded, Micellar Nanocarriers with Enhanced Penetration and Killing Efficiency in Staphylococcal Biofilms[J]. ACS Nano, 2016,10(4):4779-4789.  

    11. [11]

      Chu L P, Gao H L, Cheng T J. A Charge-Adaptive Nanosystem for Prolonged and Enhanced in Vivo Antibiotic Delivery[J]. Chem Commun, 2016,52(37):6265-6268.  

    12. [12]

      Radovic-Moreno A F, Lu T K, Puscasu V A. Surface Charge-Switching Polymeric Nanoparticles for Bacterial Cell Wall Targeted Delivery of Antibiotics[J]. ACS Nano, 2012,6(5):4279-4287.  

    13. [13]

      Zhao X, Li Y, Jin D. A Near-Infrared Multifunctional Fluorescent Probe with Inherent Tumor-Targeting Property for Bioimaging[J]. Chem Commun, 2015,51(58)11721.  

    14. [14]

      Sheng Z H, Hu D H, Zheng M B. Smart Human Serum Albumin-Indocyanine Green Nanoparticles Generated by Programmed Assembly for Dual-Modal Imaging-Guided Cancer Synergistic Phototherapy[J]. ACS Nano, 2014,8(12):12310-12322.  

    15. [15]

      Kuo W S, Chang Y T, Cho K C. Gold Nanomaterials Conjugated with Indocyanine Green for Dual-Modality Photodynamic and Photothermal Therapy[J]. Biomaterials, 2012,33(11):3270-3278.  

  • 加载中
    1. [1]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    2. [2]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    3. [3]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    4. [4]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    5. [5]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    8. [8]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    9. [9]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    10. [10]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    11. [11]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    12. [12]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    13. [13]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    14. [14]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    15. [15]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    16. [16]

      Di ZHANGTianxiang XIEXu HEWanyu WEIQi FANJie QIAOGang JINNingbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329

    17. [17]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    18. [18]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    19. [19]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    20. [20]

      Yan LiuYang WangJiayi ZhuXuxian SuXudong LinLiang XuXiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427

Metrics
  • PDF Downloads(11)
  • Abstract views(1432)
  • HTML views(517)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return