Citation: MIAO Zhongshuo, MEN Yongfeng. Crystallization and Melting Behaviors of Poly(1, 4-cyclohexylene Dimethylene Terephthalate) Studied by Fast-Scan Calorimetry[J]. Chinese Journal of Applied Chemistry, ;2020, 37(6): 642-649. doi: 10.11944/j.issn.1000-0518.2020.06.190359 shu

Crystallization and Melting Behaviors of Poly(1, 4-cyclohexylene Dimethylene Terephthalate) Studied by Fast-Scan Calorimetry

  • Corresponding author: MEN Yongfeng, men@ciac.ac.cn
  • Received Date: 30 December 2019
    Revised Date: 9 February 2020
    Accepted Date: 10 March 2020

    Fund Project: the National Science Fund for Distinguished Young Scholars 51525305Supported by the National Science Fund for Distinguished Young Scholars(No.51525305)

Figures(6)

  • The crystallization and melting behavior of poly(1, 4-cyclohexylene dimethylene terephthalate) (PCT) was studied by fast scanning calorimetry (FSC) combined with traditional differential scanning calorimetry (DSC) in the range of near glass transition temperature and melting temperature (100~270 ℃). The crystallization rate of PCT is faster when the supercooling degree is larger. FSC can effectively inhibit the crystallization of PCT during the cooling process while the traditional DSC can avoid the influence of sample degradation on the experimental results under the lower supercooling degrees. The combination of FSC and DSC can well measure the crystallization kinetics of PCT. The experimental results show that the crystallization rate is the fastest at 175 ℃. FSC is also used to measure the melting point dependence of heating rate after isothermal crystallization, and calibrated on the basis of the modeling of melting kinetics for the determination of the melting point at zero heating rate Tm. The Hoffman-Weeks plot of Tm against Tc with the intersection of Tc=Tm suggested the equilibrium melting point Tmo≅315 ℃ of chain-extended infinite-size crystals of PCT.
  • 加载中
    1. [1]

      Kibler C J, Bell A, Smith J G. Polyesters of 1, 4-Cyclohexanedimethanol[J]. J Polym Sci Part A:Polym Chem, 1964,2(13):2115-2125.

    2. [2]

      Wunderlich B. Crystal Nucleation, Growth, Annealing[J]. Macromol Phys, 1976,2:214-227.  

    3. [3]

      Hoffman J D, Davis G T, Lauritzen J I, et al. The Rate of Crystallization of Linear Polymers with Chain Folding[M]//N.B. Hannay. Treatise on Solid State Chemistry. New York-London, 1976, 3: 497-614.

    4. [4]

      Wunderlich B. Crystal Melting[M]. New York:Macromolecular Physics Academic Press, 1980, 3.

    5. [5]

      Schick C, Mathot V. Fast Scanning Calorimetry[M]. Switzerland:Springer, 2016.

    6. [6]

      Toda A, Androsch R, Schick C. Feature Article:Insights into Polymer Crystallization and Melting from Fast Scanning Chip Calorimetry[J]. Polymer, 2016,91:239-263. doi: 10.1016/j.polymer.2016.03.038

    7. [7]

      Toda A, Taguchi K, Nozaki K. Melting Behaviors of Polyethylene Crystals:An Application of Fast-Scan DSC[J]. Polymer, 2014,55:3186-3194. doi: 10.1016/j.polymer.2014.05.009

    8. [8]

      Toda A, Yamada K, Hikosaka M. Superheating of the Melting Kinetics in Polymer Crystals:A Possible Nucleation Mechanism[J]. Polymer, 2002,43:1667-1679. doi: 10.1016/S0032-3861(01)00733-9

    9. [9]

      Toda A, Taguchi K, Nozaki K. Fast Limiting Behavior of the Melting Kinetics of Polyethylene Crystals Examined by Fast-Scan Calorimetry[J]. Thermochim Acta, 2019,677:211-216. doi: 10.1016/j.tca.2018.12.024

    10. [10]

      Minakov A A, Wurm A, Schick C. Superheating in Linear Polymers Studied by Ultrafast Nanocalorimetry[J]. Eur Phys J E, 2007,23:43-53. doi: 10.1140/epje/i2007-10173-8

    11. [11]

      Toda A. Heating Rate Dependence of Melting Peak Temperature Examined by DSC of Heat Flux Type[J]. J Therm Anal Calorim, 2016,123:1795-1808. doi: 10.1007/s10973-015-4603-3

    12. [12]

      Gradys A, Sajkiewics P, Adamovsky S. Crystallization of Poly(Vinylidene Fluoride) During Ultra-Fast Cooling[J]. Thermochim Acta, 2007,461:153-157. doi: 10.1016/j.tca.2007.05.023

    13. [13]

      Toda A, Konishi M, Schick C. An Evaluation of Thermal Lags of Fast-Scan Microchip DSC with Polymer Film Samples[J]. Thermochim Acta, 2014,589:262-269. doi: 10.1016/j.tca.2014.05.038

    14. [14]

      Lee Y, Porte R S. Double-Melting Behavior of Poly(ether ether ketone)[J]. Macromolecules, 1987,20:1336-1341. doi: 10.1021/ma00172a028

    15. [15]

      Chen H S, Porter R S. Melting Behavior of Poly(Ether Ether Ketone) in Its Blends with Poly(Ether Imide)[J]. J Polym Sci B Polym Phys, 1993,31:1845-1850. doi: 10.1002/polb.1993.090311217

    16. [16]

      Santis F D, Adamovsky S, Schick C. Isothermal Nanocalorimetry of Isotactic Polypropylene[J]. Macromolecules, 2007,40:9026-9031. doi: 10.1021/ma071491b

    17. [17]

      Silvestre C, Cimmino S, Schick C. Isothermal Crystallization of Isotactic Poly(Propylene) Studied by Superfast Calorimetry[J]. Macromol Rapid Commun, 2007,28:875-881. doi: 10.1002/marc.200600844

    18. [18]

      Rhoades A M, Williams J L, Androsch R. Crystallization Kinetics of Polyamide 66 at Processing-Relevant Cooling Conditions and High Supercooling[J]. Thermochim Acta, 2015,603:103-109. doi: 10.1016/j.tca.2014.10.020

    19. [19]

      Toda A, Taguchi K, Sato K. Melting Kinetics of It-Polypropylene Crystals over Wide Heating Rates[J]. J Therm Anal Calorim, 2013,113:1231-1237. doi: 10.1007/s10973-012-2914-1

    20. [20]

      Zhuravlev E, Wunderlich B, Schick C. Kinetics of Nucleation and Crystallization in Poly(ε-Caprolactone)(PCL)[J]. Polymer, 2011,52:1983-1997. doi: 10.1016/j.polymer.2011.03.013

    21. [21]

      Androsch R, Rhoades A M, Schick C. Density of Heterogeneous and Homogeneous Crystal Nuclei in Poly(Butylene Terephthalate)[J]. Eur Polym J, 2015,66:180-189. doi: 10.1016/j.eurpolymj.2015.02.013

    22. [22]

      Konishi T, Sakatsuji W, Fukao K. Temperature Dependence of Lamellar Thickness in Isothermally Crystallized Poly(Butylene Terephthalate)[J]. Macromolecules, 2016,49:2272-2280. doi: 10.1021/acs.macromol.6b00126

    23. [23]

      Furushima Y, Toda A, Androsch R. Two Crystal Populations with Different Melting/Reorganization Kinetics of Isothermally Melt Crystallized Polyamide 6[J]. J Polym Sci B Polym Phys, 2016,54:2126-2138. doi: 10.1002/polb.24123

    24. [24]

      Xu J, Heck B, Reiter G. Stabilization of Nuclei of Lamellar Polymer Crystals:Insights from a Comparison of the Hoffman-Weeks Line with the Crystallization Line[J]. Macromolecules, 2016,49:2206-2215. doi: 10.1021/acs.macromol.5b02123

    25. [25]

      Wang J, Li Z, Hu W B. Comparing Crystallization Rates Between Linear and Cyclic Poly(Epsilon-Caprolactones) via Fast-Scan Chip-Calorimeter Measurements[J]. Polymer, 2015,63:34-40. doi: 10.1016/j.polymer.2015.02.039

    26. [26]

      Minakov A A, Schick C, Martino G. Isothermal Reorganization of Poly(Ethylene Terephthalate) Revealed by Fast Calorimetry[J]. Faraday Discuss, 2005,128:261-270. doi: 10.1039/B403441D

    27. [27]

      Marand H, Xu J, Srinivas S. Determination of the Equilibrium Melting Temperature of Polymer Crystals:Linear and Nonlinear Hoffman-Weeks Extrapolations[J]. Macromolecules, 1998,31:8219-8229. doi: 10.1021/ma980747y

  • 加载中
    1. [1]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    2. [2]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    3. [3]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    4. [4]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    5. [5]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    6. [6]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    7. [7]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    8. [8]

      Qingcui Yang Wen Liu Li Cao Chen Tang Bing Xu Jie Zhao . For Entropy Hurts: Life Thrives on Negative Entropy. University Chemistry, 2024, 39(9): 151-156. doi: 10.12461/PKU.DXHX202402029

    9. [9]

      Yan Xiao Shuling Li Yifan Li Jianing Fan Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025

    10. [10]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    11. [11]

      Qiang Wu Wenhua Hou . Teaching Classical Contents Newly: Taking Temperature–Entropy Diagram as an Example. University Chemistry, 2025, 40(4): 399-407. doi: 10.12461/PKU.DXHX202407102

    12. [12]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    13. [13]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    14. [14]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    15. [15]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    16. [16]

      Zhiliang Li . An Overview of Research on the History of Catalysis Science in China. University Chemistry, 2024, 39(7): 398-404. doi: 10.3866/PKU.DXHX202310101

    17. [17]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    18. [18]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    19. [19]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    20. [20]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

Metrics
  • PDF Downloads(3)
  • Abstract views(621)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return