Citation: MENG Yating, JIAO Yuan, ZHANG Yuan, GAO Yifang, LU Wenjing, LIU Yang, DONG Chuan. Synthesis of Red Emission Fluorescent Carbon Dots and Its Application for Detection of Persulfate[J]. Chinese Journal of Applied Chemistry, ;2020, 37(6): 719-725. doi: 10.11944/j.issn.1000-0518.2020.06.190347 shu

Synthesis of Red Emission Fluorescent Carbon Dots and Its Application for Detection of Persulfate

  • Corresponding author: DONG Chuan, dc@sxu.edu.cn
  • Received Date: 20 December 2019
    Revised Date: 26 February 2020
    Accepted Date: 27 March 2020

    Fund Project: Supported by the National Natural Science Foundation of China(No.21874087, No.21475080, No.21575084)the National Natural Science Foundation of China 21475080the National Natural Science Foundation of China 21575084the National Natural Science Foundation of China 21874087

Figures(4)

  • Red fluorescent carbon dots (R-CDs) were synthesized by one-step solvothermal method by using p-phenylenediamine and ethanol. The synthesized R-CDs were characterized by transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and fluorescence spectroscopy, respectively. The results indicate that the R-CDs are uniform with an average size of (3.63±0.20) nm. Abundant groups like hydroxyl and amine groups are linked on the surface of the synthesized R-CDs. The as-prepared R-CDs show excitation-independent property and the maximum excitation and emission wavelengths are 480 and 620 nm, respectively. Based on static quenching between R-CDs and persulfate, the fluorescence of R-CDs could be effectively quenched by persulfate. A fluorescent strategy is developed for detection of persulfate. The method showed a linear range of 2.5~120 μmol/L with a correlation coefficient (R2) of 0.9970. The limit of detection was 1.2 μmol/L, showing excellent sensitivity and selectivity. Meanwhile, the as-proposed sensing system is successfully applied to the analysis of persulfate in tap water and lake water samples with satisfactory results.
  • 加载中
    1. [1]

      Killian P F, Bruell C J, Liang C J. Iron(Ⅱ) Activated Persulfate Oxidation of MGP Contaminated Soil[J]. Soil Sedim Contamin, 2007,16(6):523-537. doi: 10.1080/15320380701623206

    2. [2]

      Branson J, Naber J, Edelen G. A Simplistic Printed Circuit Board Fabrication Process for Course Projects[J]. IEEE Transact Educat, 2000,43(3):257-261. doi: 10.1109/13.865197

    3. [3]

      Mensing T, Marek W, Raulf-Heimsoth M. Acute Exposure to Hair Bleach Causes Airway Hyperresponsiveness in a Rabbit Model[J]. Eur Respir J, 1998,12(6):1371-1374. doi: 10.1183/09031936.98.12061371

    4. [4]

      Lin H R. Solution Polymerization of Acrylamide Using Potassium Persulfate as an Initiator:Kinetic Studies, Temperature and pH Dependence[J]. Euro Polym J, 2001,37(7):1507-1510. doi: 10.1016/S0014-3057(00)00261-5

    5. [5]

      Munoz X, Cruz M J, Orriols R. Occupational Asthma Due to Persulfate Saltsa[J]. Chest, 2003,123(6):2124-2129. doi: 10.1378/chest.123.6.2124

    6. [6]

      Fisher A A, Dooms-Goossens A. Persulfate Hair Bleach Reactions Cutaneous and Respiratory Manifestations[J]. Arch Dermatol, 1976,112(10):1407-1409. doi: 10.1001/archderm.1976.01630340025007

    7. [7]

      Savari Z, Soltanian S, Noorbakhsh A. High Sensitivity Amperometric and Voltammetric Determination of Persulfate with Neutral Red/Nickel Oxide Nanowires Modified Carbon Paste Electrodes[J]. Sens Actuators B, 2013,176(1):335-343.  

    8. [8]

      Roushani M, Abdi Z. Novel Electrochemical Sensor Based on Graphene Quantum Dots/Riboflavin Nanocomposite for the Detection of Persulfate[J]. Sens Actuators B, 2014,201:503-510. doi: 10.1016/j.snb.2014.05.054

    9. [9]

      Salimi A, Noorbakhsh A, Semnani A. Immobilization of Flavine Adenine Dinucleotide onto Nickel Oxide Nanostructures Nodified Glassy Carbon Electrode:Fabrication of Highly Sensitive Persulfate Sensor[J]. J Solid State Electrochem, 2011,15(9):2041-2052. doi: 10.1007/s10008-010-1221-7

    10. [10]

      Ding H, Yu S B, Wei J S. Full-Color Light-Emitting Carbon Dots with a Surface-State-Controlled Luminescence Mechanism[J]. ACS Nano, 2015,10(1):484-491.  

    11. [11]

      Bao L, Liu C, Zhang Z L. Photoluminescence-Tunable Carbon Nanodots:Surface-State Energy-Gap Tuning[J]. Adv Mater, 2015,27(10):1663-1667. doi: 10.1002/adma.201405070

    12. [12]

      Yang P, Zhu Z, Zhang T. Orange-emissive Carbon Quantum Dots:Toward Application in Wound pH Monitoring Based on Colorimetric and Fluorescent Changing[J]. Small, 20191902823.  

    13. [13]

      Wei X, Li L, Liu J. Green Synthesis of Fluorescent Carbon Dots from Gynostemma for Bioimaging and Antioxidant in Zebrafish[J]. ACS Appl Mater Interfaces, 2019,11(10):9832-9840. doi: 10.1021/acsami.9b00074

    14. [14]

      Huo F, Liu Y, Yang X. Ultrabright Full Color Carbon Dots by Fine-Tuning Crystal Morphology Controllable Synthesis for Multicolor Bioimaging and Sensing[J]. ACS Appl Mater Interfaces, 2019,11(30):27259-27268. doi: 10.1021/acsami.9b10176

    15. [15]

      Liu H, Sun Y, Li Z. Lysosome-Targeted Carbon Dots for Ratiometric Imaging of Formaldehyde in Living Cells[J]. Nanoscale, 2019,11(17):8458-8463. doi: 10.1039/C9NR01678C

    16. [16]

      Zhang Y, Zhuo P, Chen Z. Solid-State Fluorescent Carbon Dots with Aggregation-Induced Yellow Emission for White Light-Emitting Diodes with High Luminous Efficiencies[J]. ACS Appl Mater Interfaces, 2019,11(27):24395-24403. doi: 10.1021/acsami.9b04600

    17. [17]

      Chen J, Wei J S, Zhang P. Red-Emissive Carbon Dots for Fingerprints Detection by Spray Method:Coffee Ring Effect and Unquenched Fluorescence in Drying Process[J]. ACS Appl Mater Interfaces, 2017,9(22):18429-18433. doi: 10.1021/acsami.7b03917

    18. [18]

      Yue J, Li L, Dong W. Two-Step Hydrothermal Preparation of Carbon Dots for Calcium Ion Detection[J]. ACS Appl Mater Interfaces, 2019,11(46):44566-44572.  

    19. [19]

      Jiao Y, Gao Y, Dong C. One-Step Synthesis of Label-Free Ratiometric Fluorescence Carbon Dots for the Detection of Silver Ions and Glutathione and Cellular Imaging Applications[J]. ACS Appl Mater Interfaces, 2019,11(18):16822-16829. doi: 10.1021/acsami.9b01319

    20. [20]

      Ju Y J, Li N, Liu S G. Proton-Controlled Synthesis of Red-Emitting Carbon Dots and Application for Hematin Detection in Human Erythrocytes[J]. Anal Bioanal Chem, 2019,411(6):1159-1167. doi: 10.1007/s00216-018-1547-z

    21. [21]

      Han Z, Wang K, Zhou S. High Efficiency Red Emission Carbon Dots Based on Phenylene Diisocyanate for Trichromatic White and Red LEDs[J]. J Mater Chem C, 2018,6(36):9631-9635. doi: 10.1039/C8TC03497D

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    5. [5]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    6. [6]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    7. [7]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    8. [8]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    9. [9]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    10. [10]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    11. [11]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    12. [12]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    13. [13]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    14. [14]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    15. [15]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    16. [16]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    17. [17]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    18. [18]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    19. [19]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    20. [20]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

Metrics
  • PDF Downloads(3)
  • Abstract views(628)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return