Citation: LI Weijia, MA Zhifang, XIN Zhirong, SHI Qiang. Application of Fe-Co Two-Dimension-Layered Double Hydroxide in Synergetic Therapy of Cancer[J]. Chinese Journal of Applied Chemistry, ;2020, 37(6): 627-634. doi: 10.11944/j.issn.1000-0518.2020.06.190322 shu

Application of Fe-Co Two-Dimension-Layered Double Hydroxide in Synergetic Therapy of Cancer

  • Corresponding author: MA Zhifang, zfma@ciac.ac.cn XIN Zhirong, Xinzhirong2012@126.com
  • Received Date: 28 November 2019
    Revised Date: 4 January 2020
    Accepted Date: 25 February 2020

    Fund Project: the Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry, CIAC, CAS 201620the National Natural Science Foundation of China 51573186the Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry, CIAC, CAS 201628the National Key Research and Development Program of China 2016YFC1100402the Natural Science Foundation of Shandong Province ZR2019MEM008Supported by the National Key Research and Development Program of China(No.2016YFC1100402), the National Natural Science Foundation of China(No.51573186, No.51973222), the Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry, CIAC, CAS(No.201620, No.201628), and the Natural Science Foundation of Shandong Province(No.ZR2019MEM008)the National Natural Science Foundation of China 51973222

Figures(5)

  • Photon therapy is a new selective cancer treatment technology which has been developed rapidly in recent years. It has the advantages of small trauma, good selectivity, low toxicity and no drug resistance. In this paper, we used hydrothermal synthesis method to prepare a new kind of layered Co-Fe double hydroxide nanosheet (Co-Fe-LDH) which has the characteristics of large specific surface area, high stability and good biocompatibility and is used to load photosensitizer IR783 (LDH-IR783) to realize the photothermal/photodynamic cooperative phototherapy of cancer under the stimulation of near-infrared laser. We characterized the composition, morphology, optical property, reactive oxygen species (ROS) generation and heat release of LDH-IR783 and tested its anticancer activity at the cellular and in vivo levels. The results indicate that the nanocomposite has a stable structure, high IR783 loading efficiency and good dispersibility, exhibits excellent photothermal/photodynamic effects under near-infrared light irradiation through producing considerable ROS and releasing heat rapidly to induce severe phototoxicity to cancer cells. Both in vitro and in vivo experiments display that the nanocomposite can effectively induce apoptosis of HeLa cells and significantly inhibit the growth of solid tumors without obvious side effects and damage to normal tissue. The preliminary results will provide new ideas for the design and application of photo-thermal/photodynamic synergistic drugs.
  • 加载中
    1. [1]

      Hughes D. Exploiting Genomics, Genetics and Chemistry to Combat Qntibiotic Resistance[J]. Nat Rev Gen, 2003,4(6):432-441. doi: 10.1038/nrg1084

    2. [2]

      Lee D E, Koo H, Sun I C. Multifunctional Nanoparticles for Multimodal Imaging and Theragnosis[J]. Chem Soc Rev, 2012,41(7):2656-2672. doi: 10.1039/C2CS15261D

    3. [3]

      Wistuba I I, Gelovani J G, Jacoby J J. Methodological and Practical Challenges for Personalized Cancer Therapies[J]. Nat Rev Clin Oncol, 2011,8(3):135-141. doi: 10.1038/nrclinonc.2011.2

    4. [4]

      Bown S G. Phototherapy in Tumors[J]. World J Surg, 1983,7(6):700-709. doi: 10.1007/BF01655209

    5. [5]

      Mou J, Lin T, Huang F. Black Titania-Based Theranostic Nanoplatform for Single NIR Laser Induced Dual-Modal Imaging-Guided PTT/PDT[J]. Biomaterials, 2016,84:13-24. doi: 10.1016/j.biomaterials.2016.01.009

    6. [6]

      Cheng L, Wang C, Feng L. Functional Nanomaterials for Phototherapies of Cancer[J]. Chem Rev, 2014,114(21):10869-10939. doi: 10.1021/cr400532z

    7. [7]

      Liu B, Li C, Cheng Z. Functional Nanomaterials for Near-Infrared-Triggered Cancer Therapy[J]. Biomater Sci, 2016,4(6):890-909. doi: 10.1039/C6BM00076B

    8. [8]

      Jaque D, Martinez Maestro L, del Rosal B. Nanoparticles for Photothermal Therapies[J]. Nanoscale, 2014,6(16):9494-9530. doi: 10.1039/C4NR00708E

    9. [9]

      Chen Q, Ke H, Dai Z. Nanoscale Theranostics for Physical Stimulus-Responsive Cancer Therapies[J]. Biomaterials, 2015,73:214-230. doi: 10.1016/j.biomaterials.2015.09.018

    10. [10]

      Jin C S, Lovell J F, Chen J. Ablation of Hypoxic Tumors with Dose-Equivalent Photothermal, but not Photodynamic, Therapy Using a Nanostructured Porphyrin Assembly[J]. ACS Nano, 2013,7(3):2541-2550. doi: 10.1021/nn3058642

    11. [11]

      Song X J, Chen Q, Liu Z. Recent Advances in the Development of Organic Photothermal Nano-Agents[J]. Nano Res, 2015,8(2):340-354. doi: 10.1007/s12274-014-0620-y

    12. [12]

      Marangon I, Menard-Moyon C, Silva A K A. Synergic Mechanisms of Photothermal and Photodynamic Therapies Mediated by Photosensitizer/Carbon Nanotube Complexes[J]. Carbon, 2016,97:110-123. doi: 10.1016/j.carbon.2015.08.023

    13. [13]

      Sherlock S P, Tabakman S M, Xie L. Photothermally Enhanced Drug Delivery by Ultrasmall Multifunctional FeCo/Graphitic Shell Nanocrystals[J]. ACS Nano, 2011,5(2):1505-1512. doi: 10.1021/nn103415x

    14. [14]

      Liu T, Wang C, Cui W. Combined Photothermal and Photodynamic Therapy Delivered by PEGylated MoS2 Nanosheets[J]. Nanoscale, 2014,6(19):11219-11225. doi: 10.1039/C4NR03753G

    15. [15]

      Gong H, Cheng L, Xiang J. Near-Infrared Absorbing Polymeric Nanoparticles as a Versatile Drug Carrier for Cancer Combination Therapy[J]. Adv Funct Mater, 2013,23(48):6059-6067. doi: 10.1002/adfm.201301555

    16. [16]

      Tian B, Wang C, Zhang S. Photothermally Enhanced Photodynamic Therapy Delivered by Nano-Graphene Oxide[J]. ACS Nano, 2011,5(9):7000-7009. doi: 10.1021/nn201560b

    17. [17]

      Sideris P J, Nielsen U G, Gan Z. Mg/Al Ordering in Layered Double Hydroxides Revealed by Multinuclear NMR Spectroscopy[J]. Science, 2008,321(5885):113-117. doi: 10.1126/science.1157581

    18. [18]

      Hu G, O'Hare D. Unique Layered Double Hydroxide Morphologies Using Reverse Microemulsion Synthesis[J]. J Am Chem Soc, 2005,127(50):17808-17813. doi: 10.1021/ja0549392

    19. [19]

      Gareth R W, Aamir I K, O'Hare D. Mechanistic and Kinetic Studies of Guest Ion Intercalation into Layered Double Hydroxides Using Time-Resolved, In-Situ X-ray Powder Diffraction[J]. Struct Bond, 2006,119:161-192.  

    20. [20]

      Wang Q, O'Hare D. Recent Advances in the Synthesis and Application of Layered Double Hydroxide(LDH) Nanosheets[J]. Chem Rev, 2012,112(7):4124-4155. doi: 10.1021/cr200434v

    21. [21]

      Dou Y, Zhang S, Pan T. TiO2@Layered Double Hydroxide Core-Shell Nanospheres with Largely Enhanced Photocatalytic Activity Toward O2Generation[J]. Adv Funct Mater, 2015,25(15):2243-2249. doi: 10.1002/adfm.201404496

    22. [22]

      Liang X, Zang Y, Xu Y. Sorption of Metal Cations on Layered Double Hydroxides[J]. Colloids A, 2013,433:122-131. doi: 10.1016/j.colsurfa.2013.05.006

    23. [23]

      Li B, Gu Z, Kurniawan N. Manganese-Based Layered Double Hydroxide Nanoparticles as a T1-MRI Contrast Agent with Ultrasensitive pH Response and High Relaxivity[J]. Adv Mater, 2017,291700373. doi: 10.1002/adma.201700373

  • 加载中
    1. [1]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    2. [2]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    3. [3]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    4. [4]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    5. [5]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    6. [6]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    8. [8]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-0. doi: 10.3866/PKU.WHXB202404023

    11. [11]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    12. [12]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    13. [13]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    14. [14]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    15. [15]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    16. [16]

      Tiejin ChenXiaokuang XueJian LiMinhui CuiYongliang HaoMianqi XueHaihua XiaoJiechao GePengfei Wang . Membrane-anchoring nanoengineered carbon dots as a pyroptosis amplifier for robust tumor photodynamic-immunotherapy. Acta Physico-Chimica Sinica, 2025, 41(10): 100113-0. doi: 10.1016/j.actphy.2025.100113

    17. [17]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    18. [18]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    19. [19]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    20. [20]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

Metrics
  • PDF Downloads(11)
  • Abstract views(1242)
  • HTML views(173)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return