Citation: CAI Zhifeng, CHEN Siying, PANG Shulin, SONG Shuang, JIA Kang, MAO Yujin, TIAN Fang, ZHANG Caifeng. Synthesis of 2-Mercaptobenzimidazole-Functionalized Water-Soluble Copper Nanoclusters and Their Application to the Determination of Ag+[J]. Chinese Journal of Applied Chemistry, ;2020, 37(5): 587-594. doi: 10.11944/j.issn.1000-0518.2020.05.190312 shu

Synthesis of 2-Mercaptobenzimidazole-Functionalized Water-Soluble Copper Nanoclusters and Their Application to the Determination of Ag+

  • Corresponding author: TIAN Fang, tianfqq@sina.com ZHANG Caifeng, zhangcf301@yahoo.com.cn
  • Received Date: 20 November 2019
    Revised Date: 4 January 2020
    Accepted Date: 20 February 2020

    Fund Project: Supported by the Shanxi Provincial Applied Fundamental Research Fund Project(No.201801D121257)the Shanxi Provincial Applied Fundamental Research Fund Project 201801D121257

Figures(7)

  • We reported a direct one-pot approach, employing 2-mercaptobenzimidazole as a protective agent, polyvinyl pyrrolidone as a stabilizer and hydrazine hydrate as a reducing agent, for rapid preparation of highly stable, strong fluorescent, large Stokes shift fluorescent copper nanoclusters (Cu NCs) from Cu(NO3)2 in aqueous solution at room temperature. Meanwhile, we studied the possibility of the Cu NCs to detect silver ion in water samples. The structure of Cu NCs was characterized by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The optical performance was studied using fluorescence spectroscopy and UV-visible absorption spectroscopy. The as-prepared Cu NCs exhibit a fluorescence emission at 559 nm, and show colorless and orange fluorescence under sunlight and UV light irradiation, respectively. The Cu NCs were highly dispersed with the size of 2~3 nm. In addition, it exhibits good water solubility, excellent photostability and high stability toward high concentration of sodium chloride. Under optimal reaction conditions, the Cu NCs can be used for the highly sensitive and selective detection of silver ions (Ag+) in aqueous solution. The fluorescence intensity quenches linearly within the range of 1 to 40 μmol/L with high sensitivity (LOD=0.5 μmol/L, S/N=3) and this sensing system has been successfully applied for environmental water sample analysis.
  • 加载中
    1. [1]

      Vasileiadis S, Brunetti G, Marzouk E. Silver Toxicity Thresholds for Multiple Soil Microbial Biomarkers[J]. Environ Sci Technol, 2018,52(15):8745-8755. doi: 10.1021/acs.est.8b00677

    2. [2]

      Zhang J F, Zhou Y, Yoon J. Recent Progress in Fluorescent and Colorimetric Chemosensors for Detection of Precious Metal Ions(Silver, Gold and Platinum Ions)[J]. Chem Soc Rev, 2011,40(7):3416-3429. doi: 10.1039/c1cs15028f

    3. [3]

      Leslee D B C, Karuppannan S, Karmegam M V. A Fluorescent Turn-On Carbazole-Rhodanine Based Sensor for Detection of Ag+ Ions and Application in Ag+ Ions Imaging in Cancer Cells[J]. J Fluoresc, 2019,29(1):75-89. doi: 10.1007/s10895-018-2312-6

    4. [4]

      Xie Y F, Cheng Y Y, Liu M L. A Single Gold Nanoprobe for Colorimetric Detection of Silver(I) Ions with Dark-Field Microscopy[J]. Analyst, 2019,144(6):2011-2016. doi: 10.1039/C8AN02397B

    5. [5]

      Baron M G, Herrin R T, Armstrong D E. The Measurement of Silver in Road Salt by Electrothermal Atomic Absorption Spectrometry[J]. Analyst, 2000,125(1):123-126.  

    6. [6]

      Manzoori J L, Abdolmohammad-Zadeh H, Amjadi M. Ultra-trace Determination of Silver in Water Samples by Electrothermal Atomic Absorption Spectrometry after Preconcentration with a Ligand-less Cloud Point Extraction Methodology[J]. J Hazard Mater, 2007,144(1/2):458-463.  

    7. [7]

      Mohadesi A, AliTaher M. Stripping Voltammetric Determination of Silver(I) at Carbon Paste Electrode Modified with 3-Amino-2-mercapto Quinazolin-4(3H)-one[J]. Talanta, 2007,71(2):615-619. doi: 10.1016/j.talanta.2006.05.001

    8. [8]

      Singh R P, Pambid E R. Selective Separation of Silver from Waste Solutions on Chromium(III) Hexacyanoferrate(III) Ion Exchanger[J]. Analyst, 1990,115(3):301-304.  

    9. [9]

      Katarina R K, Takayanagi T, Oshima M. Synthesis of a Chitosan-Based Chelating Resin and Its Application to the Selective Concentration and Ultratrace Determination of Silver in Environmental Water Samples[J]. Anal Chim Acta, 2006,558(1/2):246-253.  

    10. [10]

      Ceresa A, Radu A, Peper S. Rational Design of Potentiometric Trace Level Ion Sensors. A Ag+-Selective Electrode with a 100 ppt Detection Limit[J]. Anal Chem, 2002,74(16):4027-4036. doi: 10.1021/ac025548y

    11. [11]

      Kamel G M, El-Nahass M N, El-Khouly M E. Simple, Selective Detection and Efficient Removal of Toxic Lead and Silver Metal Ions Using Acid Red 94[J]. RSC Adv, 2019,9(15):8355-8363. doi: 10.1039/C9RA00464E

    12. [12]

      Liu Z X, Liu Y M, Lu S H. A Highly Selective TPE-based AIE Fluorescent Probe is Developed for the Detection of Ag+[J]. RSC Adv, 2018,8(35):19701-19706. doi: 10.1039/C8RA03591A

    13. [13]

      Jiang Y B, Gao C, Zhang X. A Highly Selective and Sensitive Fluorescence Probe with A-π-D-π-A Structure for Detection of Ag+[J]. J Mol Struct, 2018,1163:33-40. doi: 10.1016/j.molstruc.2018.01.058

    14. [14]

      Wei G, Jiang Y L, Wang F. A Novel AIEE Polymer Sensor for Detection of Hg2+ and Ag+ in Aqueous Solution[J]. J Photochem Photobiol A, 2018,358:38-43. doi: 10.1016/j.jphotochem.2018.03.006

    15. [15]

      Li M Q, Liao H W, Deng Q L. Preparation of an Intelligent Hydrogel Sensor Based on g-C3N4 Nanosheets for Selective Detection of Ag+[J]. J Macromol Sci A, 2018,55(5):408-413. doi: 10.1080/10601325.2018.1453260

    16. [16]

      Jiang X D, Xu W C, Chen X. Colorimetric Assay for Ultrasensitive Detection of Ag(I) Ions Based on the Formation of Gold Nanoparticle Oligomers[J]. Anal Bioanal Chem, 2019,411(11):2439-2445. doi: 10.1007/s00216-019-01685-6

    17. [17]

      Guo Y M, Cao F P, Lei X L. Fluorescent Copper Nanoparticles:Recent Advances in Synthesis and Applications for Sensing Metal Ions[J]. Nanoscale, 2016,8(9):4852-4863. doi: 10.1039/C6NR00145A

    18. [18]

      Yang K C, Wang Y Y, Lu C S. Ovalbumin-directed Synthesis of Fluorescent Copper Nanoclusters for Sensing both Vitamin B1 and Doxycycline[J]. J Fluoresc, 2018,196:181-186.  

    19. [19]

      Tang T, Ouyang J, Hu L S. Synthesis of Peptide Templated Copper Nanoclusters for Fluorometric Determination of Fe(III) in Human Serum[J]. Microchim Acta, 2016,183(10):2831-2836. doi: 10.1007/s00604-016-1935-z

    20. [20]

      Wang C X, Cheng H, Huang Y J. Facile Sonochemical Synthesis of pH-Responsive Copper Nanoclusters for Selective and Sensitive Detection of Pb2+ in Living Cells[J]. Analyst, 2015,140(16):5634-5639. doi: 10.1039/C5AN00741K

    21. [21]

      Aparna R S, Syamchand S S, George S. Tannic Acid Stabilised Copper Nanocluster Developed Through Microwave Mediated Synthesis as a Fluorescent Probe for the Turn on Detection of Dopamine[J]. J Clust Sci, 2017,28(4):2223-2238. doi: 10.1007/s10876-017-1221-1

    22. [22]

      Gui R J, Sun J, Cao X L. Multidentate Polymers Stabilized Water-Dispersed Copper Nanoclusters:Facile Photoreduction Synthesis and Selective Fluorescence Turn-on Response[J]. RSC Adv, 2014,4(55):29083-29088. doi: 10.1039/C4RA03606A

    23. [23]

      Bagheri H S, Afkhami A, Khoshsafar H. Protein Capped Cu Nanoclusters-SWCNT Nanocomposite as a Novel Candidate of High Performance Platform for Organophosphates Enzymeless Biosensor[J]. Biosens Bioelectron, 2017,89(2):829-836.  

    24. [24]

      Zhang Y Y, Li Y X, Zhang C Y. Fluorescence Turn-on Detection of Alkaline Phosphatase Activity Based on Controlled Release of PEI-Capped Cu Nanoclusters from MnO2 Nanosheets[J]. Anal Bioanal Chem, 2017,409(20):4771-4778. doi: 10.1007/s00216-017-0420-9

    25. [25]

      Ai L, Jiang W R, Liu Z Y. Engineering a Red Emission of Copper Nanocluster Self-assembly Architectures by Employing Aromatic Thiols as Capping Ligands[J]. Nanoscale, 2017,9(34):12618-12627. doi: 10.1039/C7NR03985A

    26. [26]

      Sun J, Yue Y, Wang P. Facile and Rapid Synthesis of Water-Soluble Fluorescent Gold Nanoclusters for Sensitive and Selective Detection of Ag+[J]. J Mater Chem C, 2016,1:908-913.  

    27. [27]

      Luo T T, Zhang S T, Wang Y J. Glutathione-Stabilized Cu Nanocluster-Based Fluorescent Probe for Sensitive and Selective Detection of Hg2+ in Water[J]. Luminescence, 2017,32:1092-1099. doi: 10.1002/bio.3296

    28. [28]

      Jayasree M, Aparna S S, Anjana R R. Fluorescence Turn on Detection of Bilirubin Using Fe(III) Modulated BSA Stabilized Copper Nanocluster; A Mechanistic Perception[J]. Anal Chim Acta, 2018,1031:152-160. doi: 10.1016/j.aca.2018.05.026

  • 加载中
    1. [1]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    2. [2]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    3. [3]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    4. [4]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    5. [5]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    6. [6]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    7. [7]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    8. [8]

      Yidan Jing Xiaomin Zhang Nan Xu . Design and Practice of Chemical Science Popularization Experiments Based on the Concept of Controlling Variables: Taking the “Recovery of Silver from Silver-Containing Wastewater” Science Popularization Project as an Example. University Chemistry, 2025, 40(4): 346-352. doi: 10.12461/PKU.DXHX202405146

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    11. [11]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    12. [12]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    13. [13]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    15. [15]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    16. [16]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    17. [17]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    18. [18]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    19. [19]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    20. [20]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

Metrics
  • PDF Downloads(8)
  • Abstract views(1162)
  • HTML views(206)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return