Interaction Mechanism Between Thiourea Aryl Iridium Anticancer Complex and Bovine Serum Albumin
- Corresponding author: XIE Xingqin, 522914369@qq.com
Citation:
XIE Xingqin. Interaction Mechanism Between Thiourea Aryl Iridium Anticancer Complex and Bovine Serum Albumin[J]. Chinese Journal of Applied Chemistry,
;2020, 37(5): 604-610.
doi:
10.11944/j.issn.1000-0518.2020.05.190303
XIE Jiangning. Systematic Investigation on the Interactions Between Steroids, Ruthenium(II), Rhodium(Ⅲ), Iridium(Ⅲ) Arene Complexes with Curcuminoid Ligands ang Human Serum Albumin[D]. Nanning: Guangxi Normal University, 2018(in Chinese).
Su W, Peng B H, Li P Y. Synthesis, Structure and Antiproliferative Activity of Organometallic Iridium(Ⅲ) Complexes Containing Thiosemicarbazone Ligands[J]. Appl Organomet Chem, 2017,31e3610. doi: 10.1002/aoc.3610
HU Wenyu. Recent Research Advance of Non-platinum-group Precious Metal Complexes in the Field of Medicine[J]. Stud Trace Elem Health, 2006,23(5):48-50. doi: 10.3969/j.issn.1005-5320.2006.05.025
XU Hongliang. Study on the Interaction Between Small-Molecular Drugs and Bovine Serum Albumin[D]. Changchun: Jilin University, 2013(in Chinese).
ZHU Fawei. Interaction Mechanism Investigation Between Ruthenium Arene Complexes with Thiosemicarbazones and Biology Macromolecules: Human Sermun Albumin and DNA[D]. Nanning: Guangxi Normal University, 2016(in Chinese).
DENG Bin. Study on the Interaction Between Several Min-molecules and Serum Albumin[D]. Shenyang: Liaoning University, 2008(in Chinese).
ZHANG Xia. Spectroscopic Study on Interaction of Some Drugs with Bovine Serum Albumin[D]. Nanchang: Nanchang University, 2007(in Chinese).
WANG Ning. Studies on Interaction of Serum Albumin and Drug Molecules by Fluorescence Spectrometry[D]. Changchun: Jilin University, 2015(in Chinese).
Xiao Q, Qiu H, Huang S. Systematic Investigation of Interactions Between Papain and MPA-Capped Cd Te Quantum Dots[J]. Mol Biol Rep, 2013,40(10):5781-5789. doi: 10.1007/s11033-013-2681-5
Xiao Q, Huang S, Ma J. Systematically Investigation of Interactions Between BSA and Different Charge-Capped CdSe/ZnS Quantum Dots[J]. J Photochem Photobiol A, 2012,249:53-60. doi: 10.1016/j.jphotochem.2012.08.019
Leckband D. Measuring the Forces That Control Protein Interactions[J]. Annu Rev Biophys Biomol Struct, 2000,29(1):1-26. doi: 10.1146/annurev.biophys.29.1.1
WU Aizhi. Study on the Chemical Constituents and the Interaction of Caffeic Acid Derivatives and Biomolecules of Rattan[D]. Guangzhou: Guangzhou University of Chinese Medicine, 2013(in Chinese).
WANG Gongke. Studies on the Interactions of Active Drug Molecules with Proteins and Nucleic Acids[D]. Xinxiang: Henan Normal University, 2012(in Chinese).
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
Yi Li , Zhaoxiang Cao , Peng Liu , Xia Wu , Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
Jie Li , Huida Qian , Deyang Pan , Wenjing Wang , Daliang Zhu , Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
Xinzhe HUANG , Lihui XU , Yue YANG , Liming WANG , Zhangyong LIU , Zhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
Hongjie SHEN , Haozhe MIAO , Yuhe YANG , Yinghua LI , Deguang HUANG , Xiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
Changqing MIAO , Fengjiao CHEN , Wenyu LI , Shujie WEI , Yuqing YAO , Keyi WANG , Ni WANG , Xiaoyan XIN , Ming FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192
Mi Wen , Baoshuo Jia , Yongqi Chai , Tong Wang , Jianbo Liu , Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147
c(BSA)=2×10-6 mol/L; c(TSC-Ir-6)=1×10-3 mol/L; 3.0×106[Q]/(mol·L-1) from a to k:0.0, 2.0, 4.0, 6.0, 8.0, 10, 12, 14, 16, 18, 20