Citation: HU Chen, JIN Yi, ZHU Shaoqing, XU Ye, SHUI Jianglan. Methods for Improving Low-Temperature Performance of Lithium Iron Phosphate Based Li-Ion Battery[J]. Chinese Journal of Applied Chemistry, ;2020, 37(4): 380-386. doi: 10.11944/j.issn.1000-0518.2020.04.200005 shu

Methods for Improving Low-Temperature Performance of Lithium Iron Phosphate Based Li-Ion Battery

Figures(6)

  • Lithium iron phosphate (LiFePO4) electrode material has the advantages of high specific capacity, stable operating voltage, low cost and environmental friendliness. It is regarded as an ideal cathode material for lithium ion batteries and is one of the main cathode materials for electric vehicles. However, the performance of LiFePO4 batteries decreases significantly at low temperatures, limiting their use in winter and cold regions. The researchers analyzed the reasons and proposed some solutions. This mini-review summaries four methods for performance improve of LiFePO4 battery at low temperature: 1)pulse current; 2)electrolyte additives; 3)surface coating; and 4)bulk doping of LiFePO4.
  • 加载中
    1. [1]

      Wan X, Liu X F, Li Y C. Fe-N-C Electrocatalyst with Dense Active Sites and Efficient Mass Transport for High-performance Proton Exchange Membrane Fuel Cells[J]. Nat Catal, 2019,2:259-268. doi: 10.1038/s41929-019-0237-3

    2. [2]

      Wang Z Y, Zhang H, Li N. Laterally Confined Graphene Nanosheets and Graphene/SnO2 Composites as High-Rate Anode Materials for Lithium-Ion Batteries[J]. Nano Res, 2010,3(10):748-756. doi: 10.1007/s12274-010-0041-5

    3. [3]

      Zhang C F, Quince M, Chen Z X. Three-Dimensional Nanocarbon and the Electrochemistry of Nanocarbon/Tin Oxide for Lithium Ion Batteries[J]. J Solid State Electrochem, 2011,15:2645-2652. doi: 10.1007/s10008-010-1256-9

    4. [4]

      Fan X Y, Shi X Y, Wang J. Sucrose Assisted Hydrothermal Synthesis of SnO2/Graphene Nanocomposites with Improved Lithium Storage Properties[J]. J Solid State Electrochem, 2013,17:201-208. doi: 10.1007/s10008-012-1871-8

    5. [5]

      Richard Prabakar S J, Hwang Y H, Bae E G. SnO2/Graphene Composites with Self-assembled Alternating Oxide and Amine Layers for High Li-Storage and Excellent Stability[J]. Adv Mater, 2013,25:3307-3312. doi: 10.1002/adma.201301264

    6. [6]

      Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries[J]. J Electrochem Soc, 1997,144(4)1188. doi: 10.1149/1.1837571

    7. [7]

      Ma S, Jiang M D, Tao P. Temperature Effect and Thermal Impact in Lithium-Ion Batteries:A Review[J]. Prog Nat Sci-Mater, 2018,28:653-666. doi: 10.1016/j.pnsc.2018.11.002

    8. [8]

      Shang Y L, Zhu C, Lu G P. Modeling and Analysis of High-Frequency Alternating-Current Heating for Lithium-Ion Batteries under Low-Temperature Operations[J]. J Power Sources, 2020,450227435. doi: 10.1016/j.jpowsour.2019.227435

    9. [9]

      Ouyang M G, Chu Z Y, Lu L G. Low Temperature Aging Mechanism Identification and Lithium Deposition in a Large Format Lithium Iron Phosphate Battery for Different Charge Profiles[J]. J Power Sources, 2015,286:309-320. doi: 10.1016/j.jpowsour.2015.03.178

    10. [10]

      Zheng Y, He Y B, Qian K. Influence of Charge Rate on the Cycling Degradation of LiFePO4/Mesocarbon Microbead Batteries under Low Temperature[J]. Ionics, 2017,23(8):1967-1978. doi: 10.1007/s11581-017-2032-y

    11. [11]

      Zhang S S, Xu K, Jow T R. Electrochemical Impedance Study on the Low Temperature of Li-Ion Batteries[J]. Electrochim Acta, 2004,49(7):1057-1061. doi: 10.1016/j.electacta.2003.10.016

    12. [12]

      Zhang S S, Xu K, Jow T R. A New Approach Toward Improved Low Temperature Performance of Li-Ion Battery[J]. Electrochem Commun, 2002,4(11):928-932. doi: 10.1016/S1388-2481(02)00490-3

    13. [13]

      Zhu S Q, Hu C, Xu Y. Performance Improvement of Lithium-Ion Battery by Pulse Current[J]. J Energy Chem, 2020,46:208-214. doi: 10.1016/j.jechem.2019.11.007

    14. [14]

      De Jongh P E, Notten P H L. Effect of Current Pulses on Lithium Intercalation Batteries[J]. Solid State Ionics, 2002,148:259-268. doi: 10.1016/S0167-2738(02)00062-0

    15. [15]

      Zhao X W, Zhang G Y, Yang L. A New Charging Mode of Li-Ion Batteries with LiFePO4/C Composites under Low Temperature[J]. J Therm Anal Calorim, 2011,104:561-567.  

    16. [16]

      Zhu J G, Sun Z C, Wei X Z. Experimental Investigations of an AC Pulse Heating Method for Vehicular High Power Lithium-Ion Batteries at Subzero Temperatures[J]. J Power Sources, 2017,367:145-157. doi: 10.1016/j.jpowsour.2017.09.063

    17. [17]

      Liao X Z, Ma Z F, Gong Q. Low-Temperature Performance of LiFePO4/C Cathode in a Auaternary Carbonate-Based Electrolyte[J]. Electrochem Commun, 2008,10(5):691-694. doi: 10.1016/j.elecom.2008.02.017

    18. [18]

      Zhang S S, Xu K, Jow T R. An Improved Electrolyte for the LiFePO4 Cathode Working in a Wide Temperature Range[J]. J Power Sources, 2006,159(1):702-707. doi: 10.1016/j.jpowsour.2005.11.042

    19. [19]

      Zhou L, Lucht B L. Performance of Lithium Tetrafluorooxalatophosphate(LiFOP) Electrolyte with Propylene Carbonate(PC)[J]. J Power Sources, 2012,205:439-448. doi: 10.1016/j.jpowsour.2012.01.067

    20. [20]

      Li S Y, Zhao W, Cui X L. An Improved Method for Synthesis of Lithium Difluoro(oxalato)borate and Effects of Sulfolane on the Electrochemical Performances of Lithium-Ion Batteries[J]. Electrochim Acta, 2013,91:282-292. doi: 10.1016/j.electacta.2013.01.011

    21. [21]

      Liao L X, Cheng X Q, Ma Y L. Fluoroethylene Carbonate as Electrolyte Additive to Improve Low Temperature Performance of LiFePO4 Electrode[J]. Electrochim Acta, 2013,87:466-472. doi: 10.1016/j.electacta.2012.09.083

    22. [22]

      Wu B R, Ren Y H, Mu D B. Enhanced Electrochemical Performance of LiFePO4 Cathode with the Addition of Fluoroethylene Carbonate in Electrolyte[J]. J Solid State Electrochem, 2013,17:811-816. doi: 10.1007/s10008-012-1927-9

    23. [23]

      Liao L X, Fang T, Zhou X G. Enhancement of Low-Temperature Performance of LiFePO4 Electrode by Butyl Sultone as Electrolyte Additive[J]. Solid State Ionics, 2014,254:27-31. doi: 10.1016/j.ssi.2013.10.047

    24. [24]

      Wu X L, Guo Y G, Su J. Carbon-Nanotube-Decorated Nano-LiFePO4@C Cathode Material with Superior High-Rate and Low-Temperature Performances for Lithium-Ion Batteries[J]. Adv Energy Mater, 2013,3(9):1155-1160. doi: 10.1002/aenm.201300159

    25. [25]

      Yao J W, Wu F, Qiu X P. Effect of CeO2-Coating on the Electrochemical Performances of LiFePO4/C Cathode Material[J]. Electrochim Acta, 2011,56:5587-5592. doi: 10.1016/j.electacta.2011.03.141

    26. [26]

      Jin Y, Yang C P, Rui X H. V2O3 Modified LiFePO4/C Composite with Improved Electrochemical Performance[J]. J Power Sources, 2011,196(13):5623-5630. doi: 10.1016/j.jpowsour.2011.02.059

    27. [27]

      Lin Y B, Lin Y, Zhou T. Enhanced Electrochemical Performances of LiFePO4/C by Surface Modification with Sn Nanoparticles[J]. J Power Sources, 2013,226:20-26. doi: 10.1016/j.jpowsour.2012.10.074

    28. [28]

      Tang H, Tan L, Xu J. Synthesis and Characterization of LiFePO4 Coating with Aluminum Doped Zinc Oxide[J]. Trans Nonferrous Met Soc China, 2013,23(2):451-455. doi: 10.1016/S1003-6326(13)62484-X

    29. [29]

      Zhang H, Xu Y L, Zhao C J. Effects of Carbon Coating and Metal Ions Doping on Low Temperature Electrochemical Properties of LiFePO4 Cathode Material[J]. Electrochim Acta, 2012,83:341-347. doi: 10.1016/j.electacta.2012.07.128

    30. [30]

      Huang Y G, Xu Y L, Yang X. Enhanced Electrochemical Performances of LiFePO4/C by Co-doping with Magnesium and Fluorine[J]. Electrochim Acta, 2013,113:156-163. doi: 10.1016/j.electacta.2013.09.044

    31. [31]

      Wang W, Qiao Y Q, He L. Study on LiFe1-xSmxPO4/C Used as Cathode Materials for Lithium-Ion Batteries with Low Sm Component[J]. Ionics, 2015,21(8):2119-2125. doi: 10.1007/s11581-015-1397-z

    32. [32]

      Cai G L, Guo R S, Liu L. Enhanced Low Temperature Electrochemical Performances of LiFePO4/C by Surface Modification with Ti3SiC2[J]. J Power Sources, 2015,288:136-144.  

    33. [33]

      Ma Z P, Shao G J, Wang X. Li3V2(PO4)3 Modified LiFePO4/C Cathode Materials with Improved High-Rate and Low-Temperature Properties[J]. Ionics, 2013,19(13):1861-1866.  

  • 加载中
    1. [1]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    2. [2]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    5. [5]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    8. [8]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    11. [11]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    12. [12]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    13. [13]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    14. [14]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    15. [15]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    16. [16]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    17. [17]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    18. [18]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    19. [19]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    20. [20]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

Metrics
  • PDF Downloads(16)
  • Abstract views(1281)
  • HTML views(343)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return