Citation: FAN Liming, WANG Shimao, YE Yuqi, DING Bowen, SHAN Xueyan, MENG Gang, FANG Xiaodong. Recent Advances in Rational Synthesis and Applications of Halide Perovskite Micro/Nano-Arrays[J]. Chinese Journal of Applied Chemistry, ;2020, 37(4): 367-379. doi: 10.11944/j.issn.1000-0518.2020.04.190297 shu

Recent Advances in Rational Synthesis and Applications of Halide Perovskite Micro/Nano-Arrays

  • Corresponding author: MENG Gang, menggang@aiofm.ac.cn
  • Received Date: 5 November 2019
    Revised Date: 20 December 2019
    Accepted Date: 19 February 2020

    Fund Project: the National Natural Science Foundation of China 11674324the National Natural Science Foundation of China 11604339CAS Key Laboratory of Photovoltaic and Energy Efficient Conservation Materials PECL2018QN001State Key Laboratory of Particle Detection and Electronics SKLPDE-KF-201907Supported by CAS Pioneer Hundred Talents Program, the National Natural Science Foundation of China(No.11604339, No.11674324), CAS Key Laboratory of Photovoltaic and Energy Efficient Conservation Materials(Ns.PECL2018QN001, PECL2018QN001), State Key Laboratory of Particle Detection and Electronics (SKLPDE-KF-201907)CAS Key Laboratory of Photovoltaic and Energy Efficient Conservation Materials PECL2018QN001

Figures(7)

  • Owing to fascinating properties including high photon absorption coefficient, low exciton binding energy and high carrier mobility, as well as unique merits including excellent defect tolerance, enabling solution growth at low temperature, and feasibility in band gap tailoring, halide perovskites have attracted significant attention and emerged as one of hot topics in the area of optoelectronics. Exploring perovskite micro/nano-arrays on the basis of existing single micro/nano-wire device would undoubtedly promote their applications in the high-performance integrated (flexible) optoelectronics devices. Unfortunately, poor resistance of halide perovskite to general chemical agents (including water) hinders their integration by traditional photolithography process. Therefore, novel lithographic methodologies are highly required. This review briefly outlines the state-of-the-art progress on the synthesis of halide perovskite micro/nano-arrays, analyzes their merits, and depicts the recent progress of micro/nano-arrays in the area of optoelectronic devices. Finally, the challenges in the current stage and the development prospects in future are discussed to provide useful guidance in exploring novel perovskite based integrated devices in future.
  • 加载中
    1. [1]

      Xue J, Zhu Z, Xu X. Narrowband Perovskite Photodetector-Based Image Array for Potential Application in Artificial Vision[J]. Nano Lett, 2018,18(12):7628-7634.  

    2. [2]

      Horvath E, Spina M, Szekrenyes Z. Nanowires of Methylammonium Lead Iodide (CH3NH3PbI3) Prepared by Low Temperature Solution-Mediated Crystallization[J]. Nano Lett, 2014,14(12):6761-6766.  

    3. [3]

      Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations:Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties[J]. Inorg Chem, 2013,52(15):9019-9038.

    4. [4]

      Zhang F, Zhong H, Chen C. Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3(X=Br, I, Cl) Quantum Dots:Potential Alternatives for Display Technology[J]. ACS Nano, 2015,9(4):4533-4542.

    5. [5]

      Fan J, Ma Y, Zhang C. Thermodynamically Self-healing 1D-3D Hybrid Perovskite Solar Cells[J]. Adv Energy Mater, 2018,8(16)1703421.  

    6. [6]

      Gao H, Feng J, Pi Y. Bandgap Engineering of Single-Crystalline Perovskite Arrays for High-Performance Photodetectors[J]. Adv Funct Mater, 2018,28(46)1804349.  

    7. [7]

      Zhang J, Yang X, Deng H. Low-Dimensional Halide Perovskites and Their Advanced Optoelectronic Applications[J]. Nano-Micro Lett, 2017,9(3)36.  

    8. [8]

      Leyden M R, Jiang Y, Qi Y. Chemical Vapor Deposition Grown Formamidinium Perovskite Solar Modules with High Steady State Power and Thermal Stability[J]. J Mater Chem A, 2016,4(34):13125-13132.  

    9. [9]

      Saliba M, Correa-Baena J P, Gratzel M. Perovskite Solar Cells:From the Atomic Level to Film Quality and Device Performance[J]. Angew Chem Int Ed Engl, 2018,57(10):2554-2569.

    10. [10]

      Dou L, Yang Y, You J. Solution-Processed Hybrid Perovskite Photodetectors with High Detectivity[J]. Nat Commun, 2014,5:5404-5410.

    11. [11]

      Xia H R, Li J, Sun W T. Organohalide Lead Perovskite Based Photodetectors with Much Enhanced Performance[J]. Chem Commun, 2014,50(89):13695-13697.  

    12. [12]

      Lin Q, Armin A, Lyons D M. Low Noise, IR-Blind Organohalide Perovskite Photodiodes for Visible Light Detection and Imaging[J]. Adv Mater, 2015,27(12):2060-2064.

    13. [13]

      Zhu P, Gu S, Shen X. Direct Conversion of Perovskite Thin Films into Nanowires with Kinetic Control for Flexible Optoelectronic Devices[J]. Nano Lett, 2016,16(2):871-876.

    14. [14]

      Chen Y, He M, Peng J. Structure and Growth Control of Organic-Inorganic Halide Perovskites for Optoelectronics:From Polycrystalline Films to Single Crystals[J]. Adv Sci(Weinh), 2016,3(4)1500392.

    15. [15]

      Deng W, Zhang X, Huang L. Aligned Single-Crystalline Perovskite Microwire Arrays for High-Performance Flexible Image Sensors with Long-Term Stability[J]. Adv Mater, 2016,28(11):2201-2208.  

    16. [16]

      Xie Z, Liu S F, Qin L X. Refractive Index and Extinction Coefficient of CH3NH3PbI3 Studied by Spectroscopic Ellipsometry[J]. Opt Mater Express, 2014,5(1)223789.

    17. [17]

      Kojima A, Teshima K, Shirai Y. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells[J]. J Am Chem Soc, 2009,131(17):6050-6051.  

    18. [18]

      Jeon N J, Na H, Jung E H. A Fluorene-Terminated Hole-Transporting Material for Highly Efficient and Stable Perovskite Solar Cells[J]. Nat Energy, 2018,3(8):682-689.

    19. [19]

      Im J H, Luo J, Franckevicius M. Nanowire Perovskite Solar Cell[J]. Nano Lett, 2015,15(3):2120-2126.  

    20. [20]

      Cao F R, Tian W, Meng L X. Ultrahigh-Performance Flexible and Self-powered Photodetectors with Ferroelectric P(VDF-TrFE)/Perovskite Bulk Heterojunction[J]. Adv Funct Mater, 2019,29(15)1808415.

    21. [21]

      Wong A B, Lai M, Eaton S W. Growth and Anion Exchange Conversion of CH3NH3PbX3 Nanorod Arrays for Light-Emitting Diodes[J]. Nano Lett, 2015,15(8):5519-5524.  

    22. [22]

      Fu Y, Zhu H, Schrader A W. Nanowire Lasers of Formamidinium Lead Halide Perovskites and Their Stabilized Alloys with Improved Stability[J]. Nano Lett, 2016,16(2):1000-1008.

    23. [23]

      Gu L, Tavakoli M M, Zhang D. 3D Arrays of 1024-Pixel Image Sensors based on Lead Halide Perovskite Nanowires[J]. Adv Mater, 2016,28(44):9713-9721.  

    24. [24]

      Waleed A, Tavakoli M M, Gu L. Lead-free Perovskite Nanowire Array Photodetectors with Drastically Improved Stability in Nanoengineering Templates[J]. Nano Lett, 2016,17(1):523-530.  

    25. [25]

      Zhu C, Tang Y, Chen F. Fabrication of Self-Assembly Polycrystalline Perovskite Microwires and Photodetectors[J]. J Cryst Growth, 2016,454:121-127.

    26. [26]

      Spina M, Grimaldi C, Náfrádi B. Rapid Thickness Reading of CH3NH3PbI3 Nanowire Thin Films from Color Maps[J]. Phys Status Solid A, 2016,213(8):2017-2023.  

    27. [27]

      Fakharuddin A, Di Giacomo F, Ahmed I. Role of Morphology and Crystallinity of Nanorod and Planar Electron Transport Layers on the Performance and Long Term Durability of Perovskite Solar Cells[J]. J Power Sources, 2015,283:61-67.  

    28. [28]

      Li X, Dar M I, Yi C Y. Improved Performance and Stability of Perovskite Solar Cells by Crystal Crosslinking with Alkylphosphonic Acid Omega-Ammonium Chlorides[J]. Nat Chem, 2015,7(9):703-711.  

    29. [29]

      Liao Q, Hu K, Zhang H H. Perovskite Microdisk Microlasers Self-assembled from Solution[J]. Adv Mater, 2015,27(22):3405-3410.  

    30. [30]

      Yan C, Wang J, Wang X. An Intrinsically Stretchable Nanowire Photodetector with a Fully Embedded Structure[J]. Adv Mater, 2014,26(6):943-950.

    31. [31]

      Song Y M, Xie Y, Malyarchuk V. Digital Cameras with Designs Inspired by the Arthropod Eye[J]. Nature, 2013,497(7447):95-99.  

    32. [32]

      He D, Zhang Y, Wu Q. Two-Dimensional Quasi-freestanding Molecular Crystals for High-Performance Organic Field-Effect Transistors[J]. Nat Commun, 2014,5:5162-5169.

    33. [33]

      Spina M, Lehmann M, N fr di B. Microengineered CH3NH3PbI3Nanowire/Graphene Phototransistor for Low-Intensity Light Detection at Room Temperature[J]. Small, 2015,11(37):4824-4828.  

    34. [34]

      Shan X, Wang S, Dong W. Flash Surface Treatment of CH3NH3PbI3 Films Using 248 nm KrF Excimer Laser Enhances the Performance of Perovskite Solar Cells[J]. Sol RRL, 2019,3(7)1900020.  

    35. [35]

      Wang S, Dong W, Fang X. Credible Evidence for the Passivation Effect of Remnant PbI2 in CH3NHCH3PbICH3 Films in Improving the Performance of Perovskite Solar Cells[J]. Nanoscale, 2016,8(12):6600-6608.

    36. [36]

      Xia R, Yin G, Wang S. Precision Excimer Laser Annealed Ga-Doped ZnO Electron Transport Layers for Perovskite Solar Cells[J]. RSC Adv, 2018,8(32):17694-17701.

    37. [37]

      SHAN Xueyan, WANG Shimao, MENG Gang. Interface Engineering of Electron Transport Layer/Light Absorption Layer of Perovskite Solar Cells[J]. Prog Chem, 2019,31(5):714-722.  

    38. [38]

      DING Bowen, WANG Shimao, CHEN Zhe. Research Progresses in Low Temperature Slution-Growth and Application of Inorganic Perovskite CsPbX3 Crystals[J].  , 2019,40(2):151-156.  

    39. [39]

      Deng H, Yang X, Dong D. Flexible and Semitransparent Organolead Triiodide Perovskite Network Photodetector Arrays with High Stability[J]. Nano Lett, 2015,15(12):7963-7969.  

    40. [40]

      Deng W, Huang L, Xu X. Ultrahigh-Responsivity Photodetectors from Perovskite Nanowire Arrays for Sequentially Tunable Spectral Measurement[J]. Nano Lett, 2017,17(4):2482-2489.  

    41. [41]

      Cheng Z, Lin J. Layered Organic Inorganic Hybrid Perovskites:Structure, Optical Properties, Film Preparation, Patterning and Templating Engineering[J]. CrystEngComm, 2010,12(10):2646-2662.

    42. [42]

      Fu Y, Meng F, Rowley M B. Solution Growth of Single Crystal Methylammonium Lead Halide Perovskite Nanostructures for Optoelectronic and Photovoltaic Applications[J]. J Am Chem Soc, 2015,137(17):5810-5818.  

    43. [43]

      Luan M, Song J, Wei X. Controllable Growth of Bulk Cubic-Phase CH3NH3PbI3 Single Crystal with Exciting Room-Temperature Stability[J]. CrystEngComm, 2016,18(28):5257-5261.  

    44. [44]

      Liu Y, Li F, Perumal Veeramalai C. Inkjet-Printed Photodetector Arrays Based on Hybrid Perovskite CH3NH3PbI3 Microwires[J]. ACS Appl Mater Interfaces, 2017,9(13):11662-11668.  

    45. [45]

      Zhang X, Liu C, Ren G. High-Switching-Ratio Photodetectors Based on Perovskite CH3NH3PbI3 Nanowires[J]. Nanomaterials(Basel), 2018,8(5):318-328.  

    46. [46]

      Xia H, Tong S, Zhang C. Flexible and Air-Stable Perovskite Network Photodetectors Based on CH3NH3PbI3/C8BTBT Bulk Heterojunction[J]. Appl Phys Lett, 2018,112(23)233301.  

    47. [47]

      Arciniegas M P, Castelli A, Piazza S. Laser-Induced Localized Growth of Methylammonium Lead Halide Perovskite Nano- and Microcrystals on Substrates[J]. Adv Funct Mater, 2017,27(34)1701613.  

    48. [48]

      Kawai S, Ishiguro I. Recording Characteristics of Anodic Oxide Films on Aluminum Containing Electrodeposited Ferromagnetic Metals and Alloys[J]. J Electrochem Soc, 1976,123(7):1047-1051.  

    49. [49]

      Jung M, Ji S G, Kim G. Perovskite Precursor Solution Chemistry:From Fundamentals to Photovoltaic Applications[J]. Chem Soc Rev, 2019,48(7):2011-2038.

    50. [50]

      Deschler F, Price M, Pathak S. High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors[J]. J Phys Chem Lett, 2014,5(8):1421-1426.  

    51. [51]

      Tan Z K, Moghaddam R S, Lai M L. Bright Light-Emitting Diodes Based on Organometal Halide Perovskite[J]. Nat Nanotechnol, 2014,9(9):687-692.

    52. [52]

      Chin X Y, Cortecchia D, Yin J. Lead Iodide Perovskite Light-Emitting Field-Effect Transistor[J]. Nat Commun, 2015,6:7383-7392.  

    53. [53]

      Suarez I, Juarez-Perez E J, Bisquert J. Polymer/Perovskite Amplifying Waveguides for Active Hybrid Silicon Photonics[J]. Adv Mater, 2015,27(40):6157-6162.

    54. [54]

      Zhao P, Bian L, Wang L. Enhanced Open Voltage of BiFeO3 Polycrystalline Film by Surface Modification of Organolead Halide Perovskite[J]. Appl Phys Lett, 2014,105(1):13901-13906.  

    55. [55]

      Deng H, Dong D, Qiao K. Growth, Patterning and Alignment of Organolead Iodide Perovskite Nanowires for Optoelectronic Devices[J]. Nanoscale, 2015,7(9):4163-4170.  

    56. [56]

      Zhuo S, Zhang J, Shi Y. Self-Template-Directed Synthesis of Porous Perovskite Nanowires at Room Temperature for High-Performance Visible-Light Photodetectors[J]. Angew Chem Int Ed, 2015,54(19):5693-5696.  

    57. [57]

      Zhu F, Men L, Guo Y. Shape Evolution and Single Particle Luminescence of Organometal Halide Perovskite Nanocrystals[J]. ACS Nano, 2015,9(3):2948-2959.  

    58. [58]

      Deng W, Zhang X, Huang L. Aligned Single-Crystalline Perovskite Microwire Arrays for High-Performance Flexible Image Sensors with Long-Term Stability[J]. Adv Mater, 2016,28(11):2201-2208.  

    59. [59]

      Feng J, Yan X, Liu Y. Crystallographically Aligned Perovskite Structures for High-Performance Polarization-Sensitive Photodetectors[J]. Adv Mater, 2017,29(16)1605993.  

    60. [60]

      Liu Y, Feng J, Zhang B. Regular Aligned 1D Single-Crystalline Supramolecular Arrays for Photodetectors[J]. Small, 2018,14(5)1701861.

    61. [61]

      Liu P, He X, Ren J. Organic-Inorganic Hybrid Perovskite Nanowire Laser Arrays[J]. ACS Nano, 2017,11(6):5766-5773.  

    62. [62]

      He X, Liu P, Zhang H. Patterning Multicolored Microdisk Laser Arrays of Cesium Lead Halide Perovskite[J]. Adv Mater, 2017,29(12)1604510.

    63. [63]

      Lee W, Lee J, Yun H. High-Resolution Spin-on-Patterning of Perovskite Thin Films for a Multiplexed Image Sensor Array[J]. Adv Mater, 2017,29(40)1702902.  

    64. [64]

      Chen G, Feng J, Gao H. Stable Alpha-CsPbI3 Perovskite Nanowire Arrays with Preferential Crystallographic Orientation for Highly Sensitive Photodetectors[J]. Adv Funct Mater, 2019,29(13)1808741.

    65. [65]

      Yang Z, Lu J F, ZhuGe M H. Controllable Growth of Aligned Monocrystalline CsPbBr3 Microwire Arrays for Piezoelectric-Induced Dynamic Modulation of Single-Mode Lasing[J]. Adv Mater, 2019,31(18)1900647.

    66. [66]

      Gao H, Qiu Y, Feng J. Nano-confined Crystallization of Organic Ultrathin Nanostructure Arrays with Programmable Geometries[J]. Nat Commun, 2019,10:3912-3920.

    67. [67]

      Wang G, Li D, Cheng H C. Wafer-scale Growth of Large Arrays of Perovskite Microplate Crystals for Functional Electronics and Optoelectronics[J]. Sci Adv, 2015,1(9)1500613.

    68. [68]

      Zhao X, Liu T, Shi W. Capillary-Written Single-Crystalline All-Inorganic Perovskite Microribbon Arrays for Highly-Sensitive and Thermal-Stable Photodetectors[J]. Nanoscale, 2019,11:2453-2459.

    69. [69]

      Lee L, Baek J, Park K S. Wafer-scale Single-Crystal Perovskite Patterned Thin Films Based on Geometrically-Confined Lateral Crystal Growth[J]. Nat Commun, 2017,815882.

    70. [70]

      Zhizhchenko A, Syubaev S, Berestennikov A. Single-Mode Lasing from Imprinted Halide-Perovskite Microdisks[J]. ACS Nano, 2019,13(4):4140-4147.

    71. [71]

      Spina M, Bonvin E, Sienkiewicz A. Controlled Growth of CH3NH3PbI3 Nanowires in Arrays of Open Nanofluidic Channels[J]. Sci Rep, 2016,619834.

    72. [72]

      Chou S S, Swartzentruber B S, Janish M T. Laser Direct Write Synthesis of Lead Halide Perovskites[J]. Chem Lett, 2016,7:3736-3741.  

    73. [73]

      Alexander A J. Making Light Work of Crystal Growth A New Method of Stimulating Crystal Growth by Laser Light Could Enhance the Way We Make Materials[J]. Nat Photonics, 2016,10(11):694-695.  

    74. [74]

      Mathies F, Eggers H, Richards B S. Inkjet-Printed Triple Cation Perovskite Solar Cells[J]. ACS Appl Energy Mater, 2018,1(5):1834-1839.

    75. [75]

      Bag M, Jiang Z, Renna L A. Rapid Combinatorial Screening of Inkjet-Printed Alkyl-Ammonium Cations in Perovskite Solar Cells[J]. Mater Lett, 2016,164:472-475.  

    76. [76]

      Huang J, Lee M, Lucero A. Area-Selective ALD of TiO2 Nanolines with Electron-Beam Lithography[J]. J Phys Chem C, 2014,118(40):23306-23312.  

    77. [77]

      Schmager R, Abzieher T, Brenner P, et al. Towards Nano-Patterned Perovskite Layers for Enhanced Absorption In Solar Cells[C]//WCPEC.Hawaii: IEEE, 2018: 0015-0017.

    78. [78]

      Cefarin N, Cian A, Sonato A. Nanostructuring Methylammonium Lead Iodide Perovskite by Ultrafast Nano Imprinting Lithography[J]. Microelectron Eng, 2017,176:106-110.  

    79. [79]

      Wang H, Haroldson R, Balachandran B. Nanoimprinted Perovskite Nanograting Photodetector with Improved Efficiency[J]. ACS Nano, 2016,10(12):10921-10928.  

    80. [80]

      Zhizhchenko A, Syubaev S, Berestennikov A. Single-Mode Lasing from Imprinted Halide-Perovskite Microdisks[J]. ACS Nano, 2019,13(4):4140-4147.

    81. [81]

      Cao F R, Tian W, Wang M. Semitransparent, Flexible, and Self-powered Photodetectors Based on Ferroelectricity-Assisted Perovskite Nanowire Arrays[J]. Adv Funct Mater, 2019,29(24)1901280.

    82. [82]

      Rayi V K, Scheidt R A, DuBose J. Hierarchical Arrays of Cesium Lead Halide Perovskite Nanocrystals through Electrophoretic Deposition[J]. J Am Chem Soc, 2018,140(28):8887-8894.  

    83. [83]

      Mir W J, Livache C, Goubet N. Strategy to Overcome Recombination Limited Photocurrent Generation in CsPbX3 Nanocrystal Arrays[J]. Appl Phys Lett, 2018,112(11)113503.  

    84. [84]

      Lei Y, Gu L Y, Yang X G. Fast Chemical Vapor-Solid Reaction for Synthesizing Organometal Halide Perovskite Array Thin Films for Photodetector Applications[J]. J Alloys Compd, 2018,766:933-940.  

    85. [85]

      Wang Y, Yasar M, Luo Z. Temperature Difference Triggering Controlled Growth of All-Inorganic Perovskite Nanowire Arrays in Air[J]. Small, 2018,14(41)1803010.

    86. [86]

      Gao Y, Zhao L, Shang Q. Ultrathin CsPbX3 Nanowire Arrays with Strong Emission Anisotropy[J]. Adv Mater, 2018,30(31)1801805.

    87. [87]

      Wang X, Zhao D W, Qiu Y P. PIN Diodes Array Made of Perovskite Single Crystal for X-Ray Imaging[J]. Phys Status Solidi RRL, 2018,12(10)1800380.

    88. [88]

      Duan Z, Wang Y, Li G. Chip-Scale Fabrication of Uniform Lead Halide Perovskites Microlaser Array and Photodetector Array[J]. Laser Photonics Rev, 2018,12(1)1700234.

    89. [89]

      Li F, Ma C, Wang H. Ambipolar Solution-Processed Hybrid Perovskite Phototransistors[J]. Nat Commun, 2015,68238.

    90. [90]

      Zhang Y, Liu J, Wang Z. Synthesis, Properties, and Optical Applications of Low-Dimensional Perovskites[J]. Chem Commun, 2016,52(94):13637-13655.

    91. [91]

      Senanayak S P, Yang B, Thomas T H. Understanding Charge Transport in Lead Iodide Perovskite Thin-Film Field-Effect Transistors[J]. Sci Adv, 2017,3(1)e1601935.

    92. [92]

      Chen J, Zhou S, Jin S. Crystal Organometal Halide Perovskites with Promising Optoelectronic Applications[J]. J Mater Chem C, 2016,4(1):11-27.  

    93. [93]

      Feng J, Gong C, Gao H. Single-crystalline Layered Metal-Halide Perovskite Nanowires for Ultrasensitive Photodetectors[J]. Nat Electron, 2018,1(7):404-410.

    94. [94]

      Zhou W J, Jin K J, Guo H Z. Electrode Effect on High-Detectivity Ultraviolet Photodetectors Based on Perovskite Oxides[J]. J Appl Phys, 2013,114(22)224503.  

    95. [95]

      Gao L, Zeng K, Guo J. Passivated Single-Crystalline CH3NH3PbI3 Nanowire Photodetector with High Detectivity and Polarization Sensitivity[J]. Nano Lett, 2016,16(12):7446-7454.  

    96. [96]

      Warrant E, Nilsson D E. Invertebrate vision[M]. Cambridge University Press, 2006.

    97. [97]

      Dudley R. The Biomechanics of Insect Flight: Form, Function, Evolution[M]. Princeton University Press, 2002.

    98. [98]

      Kova? M, Zufferey J C, Floreano D. Flying Insects and Robots[M]. Springer, 2009: 271-284.

    99. [99]

      Yu W, Li F, Yu L. Single Crystal Hybrid Perovskite Field-Effect Transistors[J]. Nat Commun, 2018,9:5354-5364.

    100. [100]

      Zhou H, Yuan S, Wang X. Vapor Growth and Tunable Lasing of Band Gap Engineered Cesium Lead Halide Perovskite Micro/Nanorods with Triangular Cross Section[J]. ACS Nano, 2016,11(2):1189-1195.  

    101. [101]

      Piccione B, Cho C H, Van Vugt L K, et al. All-optical Active Switching in Individual Semiconductor Nanowires[J]. Nat Nanotechnol, 2012, 7(10): 640-646.

    102. [102]

      Wang Z, Liu J, Xu Z Q. Wavelength-tunable Waveguides Based on Polycrystalline Organic-Inorganic Perovskite Microwires[J]. Nanoscale, 2016,8(12):6258-6264.  

    103. [103]

      Blanche P A, Bablumian A, Voorakaranam R. Holographic Three-Dimensional Telepresence Using Large-Area Photorefractive Polymer[J]. Nature, 2010,468(7320):80-83.  

    104. [104]

      Bar-On O, Brenner P, Lemmer U, et al. Perovskite Micro Laser Arrays Using Scalable Lithography: Towards Integrated Perovskite Photonics[C]//CLEO San Jose: IEEE, 2019.

    105. [105]

      Xing G, Mathews N, Lim S S. Low-temperature Solution-Processed Wavelength-Tunable Perovskites for lasing[J]. Nat Mater, 2014,13(5):476-481.  

    106. [106]

      Zhang Q, Su R, Du W. Advances in Small Perovskite-Based Lasers[J]. Small Methods, 2017,1(9)1700163.

    107. [107]

      Dhanker R, Brigeman A N, Larsen A V. Random Lasing in Organo-Lead Halide Perovskite Microcrystal Networks[J]. Appl Phys Lett, 2014,105(15)151112.  

    108. [108]

      Wang K, Gu Z, Liu S. High-Density and Uniform Lead Halide Perovskite Nanolaser Array on Silicon[J]. J Phys Chem Lett, 2016,7(13):2549-2555.  

    109. [109]

      Feng J, Yan X, Zhang Y. "Liquid Knife" to Fabricate Patterning Single-Crystalline Perovskite Microplates toward High-Performance Laser Arrays[J]. Adv Mater, 2016,28(19):3732-3741.  

    110. [110]

      Wu Z, Chen J, Mi Y. All-Inorganic CsPbBr3 Nanowire Based Plasmonic Lasers[J]. Adv Opt Mater, 2018,6(22)1800674.  

    111. [111]

      Kang K, Ahn H, Song Y. High-Performance Solution-Processed Organo-Metal Halide Perovskite Unipolar Resistive Memory Devices in a Cross-Bar Array Structure[J]. Adv Mater, 2019,31(21)1804841.

    112. [112]

      Zou C, He L, Lin L Y. Vacuum-Deposited Inorganic Perovskite Memory Arrays with Long-Term Ambient Stability[J]. Phys Status Solidi RRL, 2019,13(9)1900182.

    113. [113]

      Zou C, Zheng J J, Chang C. Nonvolatile Rewritable Photomemory Arrays Based on Reversible Phase-Change Perovskite for Optical Information Storage[J]. Adv Opt Mater, 2019,7(18)1900558.

    114. [114]

      Li X, Dar M I, Yi C. Improved Performance and Stability of Perovskite Solar Cells by Crystal Crosslinking with Alkylphosphonic Acid Omega-Ammonium Chlorides[J]. Nat Chem, 2015,7(9):703-711.  

    115. [115]

      Guo N, Hu W, Liao L. Anomalous and Highly Efficient InAs Nanowire Phototransistors Based on Majority Carrier Transport at Room Temperature[J]. Adv Mater, 2014,26(48):8203-8209.

    116. [116]

      Peng L, Hu L, Fang X. Energy Harvesting for Nanostructured Self-Powered Photodetectors[J]. Adv Funct Mater, 2014,24(18):2591-2610.  

    117. [117]

      Liu X, Liu X, Wang J. Transparent, High-Performance Thin-Film Transistors with an InGaZnO/Aligned-SnO2-Nanowire Composite and their Application in Photodetectors[J]. Adv Mater, 2014,26(43):7399-7404.  

    118. [118]

      Zhou X, Lu M Y, Lu Y J. Nanoscale Optical Properties of Indium Gallium Nitride/Gallium Nitride Nanodisk-in-Rod Heterostructures[J]. ACS Nano, 2015,9(3):2868-2875.

  • 加载中
    1. [1]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    2. [2]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    3. [3]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    4. [4]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    5. [5]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    6. [6]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    7. [7]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    8. [8]

      Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075

    9. [9]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    10. [10]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    11. [11]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    12. [12]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    13. [13]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    14. [14]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    15. [15]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    16. [16]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    19. [19]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    20. [20]

      Zhou Fang Zhihao Zhang Weihan Jiang Kin Shing Chan . Warfarin: From Poison to Cure, the Remarkable Journey of a Molecule. University Chemistry, 2025, 40(4): 326-330. doi: 10.12461/PKU.DXHX202406038

Metrics
  • PDF Downloads(35)
  • Abstract views(1992)
  • HTML views(599)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return