Citation: CAI Fengze, XU Yongling, ZHOU Le, XU Bingsong, CHEN Hao, SUN Jianqiang, LI Di, WANG Hui. Synthesis and Properties of Red-Emitting Fluorescence Probe for Viscosity Detection[J]. Chinese Journal of Applied Chemistry, ;2020, 37(4): 440-446. doi: 10.11944/j.issn.1000-0518.2020.04.190284 shu

Synthesis and Properties of Red-Emitting Fluorescence Probe for Viscosity Detection

  • Corresponding author: WANG Hui, wanghias@126.com
  • Received Date: 24 October 2019
    Revised Date: 25 November 2019
    Accepted Date: 18 February 2020

    Fund Project: Supported by the Student Research Program of Wannan Medical College(No.WK2019S44), and Anhui Provincial Natural Science Foundation(No.1908085QB50)Anhui Provincial Natural Science Foundation 1908085QB50the Student Research Program of Wannan Medical College WK2019S44

Figures(7)

  • A red-emitting D-π-A type fluorescence probe (E)-3-(2-ethoxy-2-oxoethyl)-2-(4-((4-(methoxycarbonyl)phenyl)(phenyl)amino)styryl)benzo[d]thiazol-3-ium hexafluorophosphate salt(L) based on triphenylamine and benzothiazole salts for detecting viscosity was designed and synthesized, which was fully characterized by modern analytical testing methods. The systematic investigations indicated that probe L displayed a strong fluorescence emission at about 630 nm in viscous media, which could minimize the background noises effectively and improve the signal-to-noise(S/N) ratio of biological imaging. Probe L exhibited great sensitivity to viscosity. Moreover, probe L showed a good linear relationship (R2=0.9934) between the fluorescence intensity response (log (I/I0)) and viscosity (log η). Besides, probe L exhibited a good selectivity and could serve as a fluorescent probe for sensing viscosity without being interfered by polarity and other analytes. Furthermore, biological experimental indicated that probe L possesses low cytotoxicity, which can be applied to the fluorescence imaging of intracellular microenvironment viscosity.
  • 加载中
    1. [1]

      Raut S, Kimball J, Fudala R. A Homodimeric BODIPY Rotor as a Fluorescent Viscosity Sensor for Membrane-Mimicking and Cellular Environments[J]. Phys Chem Chem Phys, 2014,16:27037-27042. doi: 10.1039/C4CP04260C

    2. [2]

      Peng X J, Yang Z G, Wang J Y. Fluorescence Ratiometry and Fluorescence Lifetime Imaging:Using a Single Molecular Sensor for Dual Mode Imaging of Cellular Viscosity[J]. J Am Chem Soc, 2011,133(17):6626-6635. doi: 10.1021/ja1104014

    3. [3]

      Dai X, Dong B L, Ren M G. Unique D-π-A-π-D Type Fluorescent Probes for the Two-Photon Imaging of Intracellular Viscosity[J]. J Mater Chem B, 2018,6:381-385. doi: 10.1039/C7TB02414B

    4. [4]

      Sun W, Shi Y D, Ding A X. Imaging Viscosity and Peroxynitrite by a Mitochondria-Targeting Two-Photon Ratiometric Fluorescent Probe[J]. Sens Actuators B, 2018,276(10):238-246.  

    5. [5]

      Liu F, Wu T, Cao J F. Ratiometric Detection of Viscosity Using a Two-Photon Fluorescent Sensor[J]. Chem Eur J, 2013,19(5):1548-1553.  

    6. [6]

      Ning P, Dong P Y, Geng Q. A Two-Photon Fluorescent Probe for Viscosity Imaging in Vivo[J]. J Mater Chem B, 2017,5:2743-2749. doi: 10.1039/C7TB00136C

    7. [7]

      Zhou K, Ren M G, Deng B B. Development of a Viscosity Sensitive Fluorescent Probe for Real-Time Monitoring of Mitochondria Viscosity[J]. New J Chem, 2017,41:11507-11511.  

    8. [8]

      Peng M, Yin J L, Lin W Y. Development of a Two-Photon Fluorescent Probe to Monitor the Changes of Viscosity in Living Cells, Zebra Fish and Mice[J]. Spectrochim Acta Part A, 2020,224(5)117310.

    9. [9]

      Gao S Y, Ma Y Y, Lin W Y. A Deep-Red Emission Fluorescent Probe for Detection of Viscosity in Living Cells and Mice[J]. Anal Methods, 2019,11:2626-2629. doi: 10.1039/C9AY00593E

    10. [10]

      Zhang G B, Ni Y, Zhang D T. Rational Design of NIR Fluorescence Probes for Sensitive Detection of Viscosity in Living Cells[J]. Spectrochim Acta Part A, 2019,214(5):339-347.

    11. [11]

      Zhang G, Sun Y M, He X Q. Red-Emitting Mitochondrial Probe with Ultrahigh Signal-to-Noise Ratio Enables High-Fidelity Fluorescent Images in Two-Photon Microscopy[J]. Anal Chem, 2015,87(24):12088-12095.  

    12. [12]

      Ren M G, Zhou K, Wang L. Construction of a Ratiometric Two-Photon Fluorescent Probe to Monitor the Changes of Mitochondrial Viscosity[J]. Sens Actuators B, 2018,262(1):452-459.  

    13. [13]

      Guo R, Ma Y Y, Tang Y H. A Novel Mitochondria-Targeted Near-Infrared(NIR) Probe for Detection of Viscosity Changes in Living Cell, Zebra Fishes and Living Mice[J]. Talanta, 2019,204(1):868-874.

    14. [14]

      Yang Z G, Cao J F, He Y X. Macro-/Micro-Environment-Sensitive Chemosensing and Biological Imaging[J]. Chem Soc Rev, 2014,43:4563-4601. doi: 10.1039/C4CS00051J

    15. [15]

      Joo J H, Youn D, Park S Y. Mitochondria-Targetable Red-Emitting Probe for Real-Time Fluorescence Monitoring of NAD(P)H in Live Cells[J]. Dyes Pigm, 2019,170107561. doi: 10.1016/j.dyepig.2019.107561

    16. [16]

      Chen H, Dong B L, Tang Y H. A Unique "Integration" Strategy for the Rational Design of Optically Tunable Near-Infrared Fluorophores[J]. Acc Chem Res, 2017,50(6):1410-1422. doi: 10.1021/acs.accounts.7b00087

    17. [17]

      Lartia R, Allain C, Bordeau G. Synthetic Strategies to Derivatizable Triphenylamines Displaying High Two-Photon Absorption[J]. J Org Chem, 2008,73(5):1732-1744. doi: 10.1021/jo702002y

    18. [18]

      Li D D, Tian X H, Wang A D. Nucleic Acid-Selective Light-Up Fluorescent Biosensors for Ratiometric Two-Photon Imaging of the Viscosity of Live Cells and Tissues[J]. Chem Sci, 2016,7:2257-2263. doi: 10.1039/C5SC03956H

    19. [19]

      Jiang N, Fan J L, Zhang S. Dual Mode Monitoring Probe for Mitochondrial Viscosity in Single Cell[J]. Sens Actuators B, 2014,190:685-693. doi: 10.1016/j.snb.2013.09.062

    20. [20]

      Wang H, Cai F Z, Zhou L. A Red-Emissive Mitochondrial Probe for Imaging of the Viscosity in Living Cells[J]. New J Chem, 2019,43:8811-8815. doi: 10.1039/C9NJ01826C

    21. [21]

      Guo L F, Zhang R Y, Sun Y M. Styrylpyridine Salts-Based Red Emissive Two-Photon Turn-On Probe for Imaging the Plasma Membrane in Living Cells and Tissues[J]. Analyst, 2016,141:3228-3232. doi: 10.1039/C6AN00147E

  • 加载中
    1. [1]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    2. [2]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    3. [3]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    4. [4]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    5. [5]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    6. [6]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    7. [7]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    8. [8]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    9. [9]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    10. [10]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    11. [11]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    14. [14]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    15. [15]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    16. [16]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    17. [17]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    18. [18]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    19. [19]

      Fengmiao Yu Yang Sheng Chanyue Li Bao Li . The Three Lives of Aspirin. University Chemistry, 2024, 39(9): 115-121. doi: 10.12461/PKU.DXHX202402033

    20. [20]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

Metrics
  • PDF Downloads(4)
  • Abstract views(944)
  • HTML views(299)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return