Citation: ZHANG Tianyong, Ren Zhongjing, LI Bin, JIANG Shuang, SHI Jixing, SHI Zhiqiang, LÜ Dongjun. An Efficient Method for Improved Preparation of C.I. Pigment Red 177 Intermediate[J]. Chinese Journal of Applied Chemistry, ;2020, 37(4): 433-439. doi: 10.11944/j.issn.1000-0518.2020.04.190251 shu

An Efficient Method for Improved Preparation of C.I. Pigment Red 177 Intermediate

  • Corresponding author: LI Bin, libin@tju.edu.cn JIANG Shuang, shuangjiang@tju.edu.cn
  • Received Date: 20 September 2019
    Revised Date: 12 December 2019
    Accepted Date: 18 February 2020

    Fund Project: the Natural Science Foundation of Tianjin 16JCYBJC20800the National Natural Science Foundation of China 21908161Supported by the National Natural Science Foundation of China(No.21908161), the Tianjin Science and Technology Innovation Platform Program(No.14TXGCCX00017), the Natural Science Foundation of Tianjin(No.16JCYBJC20800)the Tianjin Science and Technology Innovation Platform Program 14TXGCCX00017

Figures(6)

  • The effect of batch addition of the catalyst (copper powder) on the reaction rate during the synthesis of 4, 4'-diamino-1, 1'-dianthraquinone-3, 3'-disulfonic acid (DAS) was investigated systematically. The results indicate that 55 ℃ is the preferred reaction temperature. Copper powder and sodium bromate with a mass ratio of of 2:5 are first added, and the second portion of catalyst with a mass ratio of 1:5 copper powder to sodium bromate is then added during the reaction. The reaction time could be saved for 2~3 h compared to adding copper powder at one time (the mass ratio of copper powder to sodium bromate is 3:5). The copper salt mixed in DAS could be removed efficiently by addition of citric acid during the preparation process, which can improve the purity of DAS. When the mass ratio of copper powder to citric acid is 6:1, the content of copper salt in DAS is less than 0.001%. In addition, the influence of the residual amount of the filtrate after distillation on the yield of DAS is also explored and the yield of DAS is above 95% when the remaining amount of filtrate is 20 mL. The results of this study also indicate that to further improve the yield of the reaction, more efficient catalyst is needed.
  • 加载中
    1. [1]

      ZHAO Jinbang. Application of Organic Pigments in Coatings Industry and Its Progress[J]. Shanghai Coat, 2008,46(1):25-30. doi: 10.3969/j.issn.1009-1696.2008.01.008

    2. [2]

      ZHANG Tianyong. Synthetic Technology of C.I. Pigment Red 177[J]. Chem Intermed, 2004,1(8)72.

    3. [3]

      ZHANG Tianyong, LI Wei, LI Bin. Synthesis of C.I. Pigment Red 177 in Ionic Liquids[J]. Fine Chem, 2014,31(9):1132-1136.  

    4. [4]

      Yoo J, Bum L S, Jang J H. Colored Photosensitive Resin Composition Used in Color Filter of Organic Light Emitting Element for Image Display Apparatus, Comprises Xanthene-Based Dye, and Colorant Including C.I. Yellow Pigments and C.I. Red Pigments: KR, 2019107790A[P]. 2019-09-23.

    5. [5]

      Tsunekawa M, Hirano A, Terashima Y. Red Coloring Composition for Forming Color Filter, Comprises Red Dye Including Azo Pigment and Pigment Red, Yellow Dye Containing Pigment Yellow, Alkali-Soluble Resin, Photopolymerizable Monomer and Photoinitiator: JP, 2018159749A[P]. 2018-10-11

    6. [6]

      Ullmann F. On a New Formation Manner of Diphenylamine Derivatives[J]. Chem Ber, 1903,36:2382-2384.

    7. [7]

      Evans D A, Wood M R, Trotter B W. Total Syntheses of Vancomycin and Eremomycin Aglycons[J]. Angew Chem Int Ed, 1998,37(19):2700-2704. doi: 10.1002/(SICI)1521-3773(19981016)37:19<2700::AID-ANIE2700>3.0.CO;2-P

    8. [8]

      Angelo N D, Peterson J J, Bookers K. Effect of Microwave Heating on Ullmann-Type Heterocycle-Aryl Ether Synthesis Using Chloroheterocycles[J]. Tetrahedron Lett, 2006,47(29):5045-5048.

    9. [9]

      CIBA Limited. 4, 4'-Diamino-1, 1'-dianthraquinonyl Compounds and Process for Their Manufacture: GB, 926514[P]. 1963-05-22.

    10. [10]

      FEI Xuening, ZHOU Chunlong. Synthesis and Pigmentation of C.I. Pigment Red 177[J]. Mod Paint Finish, 1996,4:4-7.

    11. [11]

      ZHANG Tianyong, LI Wei, LI Bin. Study on Ullmann Condensation Reaction of Producing DAS Catalyzed by Fresh Copper Powder in One-Pot Method[J]. Spec Petrochem, 2014,31(1):42-45.

    12. [12]

      ZHANG Tianyong, LI Bin, FEI Xuening, et al. Preparation of Supported Copper Powder Catalyst for Ullmann Condensation Reaction of Bromamine Acid: CN, 201310456366.5[P]. 2015-07-01(in Chinese).

    13. [13]

      ZHANG Tianyong, LI Wei, LI Bin, et al. Synthesis of C.I. Pigment Red 177 in Ionic Liquids: CN, 2014100652772[P]. 2016-02-17(in Chinese).

    14. [14]

      ZHANG Tianyong, ZHU Shaodi, LI Bin. Synthesis of 4, 4'-Diamino-1, 1'-dianthraquinone-3, 3'-disulfonic Acid in Organic Solvent Systems[J]. CIESC J, 2017,68(1):146-153.

    15. [15]

      FU Dongmei, ZHANG Feifang, WANG Lianzhi. Simultaneous Removal of Nitrobenzene and Phenol by Homogenous Catalytic Wet Air Oxidation[J]. Chinese J Catal, 2015,36(7):952-956.  

    16. [16]

      HUANG Tianjiao, ZHANG Yaping, ZHUANG Ke. Preparation of Honeycombed Holmium-Modified Fe-Mn/TiO2 Catalyst and Its Performance in the Low Temperatur Selective Catalytic Reduction of NOx[J]. J Fuel Chem Technol, 2018,46(3):319-327. doi: 10.3969/j.issn.0253-2409.2018.03.009

    17. [17]

      LI Zhihua, ZHANG Guiqing, GUAN Wenjuan. Study on Hydrometallurgical Extraction of Molybdenum and Vanadium from Spent HDS Catalysts[J]. Rare Met Cem Carbides, 2016,44(3):12-16.  

  • 加载中
    1. [1]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    4. [4]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    8. [8]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    9. [9]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    10. [10]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    11. [11]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    12. [12]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    13. [13]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    16. [16]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    17. [17]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    18. [18]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

Metrics
  • PDF Downloads(3)
  • Abstract views(705)
  • HTML views(127)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return