Citation: HUO ZhaoHui, YANG Xiaoshan, CHEN Xiaoli, ZHANG Gang, YIN Wei, CAO Manli, SHI Lei, QIU Yanxuan. Preparation of Ag/Two-Dimensional Graphitic Carbon Nitride/Reduced Graphene Oxide Composite and Its Photocatalytic Degradation of Antibiotics[J]. Chinese Journal of Applied Chemistry, ;2020, 37(4): 471-480. doi: 10.11944/j.issn.1000-0518.2020.04.190247 shu

Preparation of Ag/Two-Dimensional Graphitic Carbon Nitride/Reduced Graphene Oxide Composite and Its Photocatalytic Degradation of Antibiotics

  • Corresponding author: HUO ZhaoHui, zhaohuihuo@hotmail.com
  • Received Date: 16 September 2019
    Revised Date: 9 December 2019
    Accepted Date: 10 February 2020

    Fund Project: Supported by the Innovation and Strong School Funding from Guangdong University of Education(No.2016KQNCX112), the Engineering Technology Development Center of Advanced Materials & Energy Saving and Emission Reduction in Guangdong Colleges and Universities(No.2016GCZX007), the College Students' Scientific and Technological Innovation Project(No.201914278112, No.201914278113), and the Higher Education Teaching Reform Project in Guangdong Province(2018)the Higher Education Teaching Reform Project in Guangdong Province 2018the Engineering Technology Development Center of Advanced Materials & Energy Saving and Emission Reduction in Guangdong Colleges and Universities 2016GCZX007the College Students' Scientific and Technological Innovation Project 201914278112the Innovation and Strong School Funding from Guangdong University of Education 2016KQNCX112the College Students' Scientific and Technological Innovation Project 201914278113

Figures(7)

  • In order to optimize the structure of graphitic carbon nitride (g-C3N4) photocatalyst and improve its degradation performance to pollutants, two-dimensional graphitic carbon nitride (2D-C3N4) was prepared by high temperature calcination and thermal oxidation stripping with melamine as the precursor. Ag/2D-C3N4/rGO(reduced graphene oxide) composite photocatalyst was synthesized by photoreduction method. The material obtained was characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), photoluminescence spectroscopy (PL), X-ray photoelectron spectroscopy (XPS) and nitrogen adsorption desorption isotherm curve (BET). Taking ceftriaxone sodium as the target pollutant, the effects of pH, catalyst dosage and initial concentration of ceftriaxone sodium on the adsorption and degradation properties of the catalyst were investigated, and the degradation reaction mechanism was explored. When pH=6.0, the amount of catalyst is 0.3 g/L, and the initial concentration of ceftriaxone sodium is 10 mg/L, the degradation rate of ceftriaxone sodium can reach 89.1%. The catalyst has strong stability and can be used for treating wastewater containing cephalosporin antibiotics.
  • 加载中
    1. [1]

      Lindberg R H, Wennberg P, Johansson M I. Screening of Human Antibiotic Substances and Determination of Weekly Mass Flows in Five Sewage Treatment Plants in Sweden[J]. Environ Sci Technol, 2005,39(10):3421-3429. doi: 10.1021/es048143z

    2. [2]

      Zhang Q Q, Ying G G, Pan C G. Comprehensive Evaluation of Antibiotics Emission and Fate in the River Basins of China:Source Analysis, Multimedia Modeling, and Linkage to Bacterial Resistance[J]. Environ Sci Technol, 2015,49(11):6772-6782. doi: 10.1021/acs.est.5b00729

    3. [3]

      JIN Minglan, LIU Kai, XU Yingying. Characteristics of Sulfonamides, Resistant Bacteria and Resistance Genes in Sewage Treatment Plants[J]. Environ Eng, 2015,33(11):1-4.  

    4. [4]

      Li S, Hu J. Photolytic and Photocatalytic Degradation of Tetracycline:Effect of Humic Acid on Degradation Kinetics and Mechanisms[J]. J Hazard Mater, 2016,318(15):134-144.

    5. [5]

      Yan W, Yan L, Jing C. Impact of Doped Metals on Urea-Derived g-C3N4 for Photocatalytic Degradation of Antibiotics:Structure, Photoactivity and Degradation Mechanisms[J]. Appl Catal B:Environ, 2019,244(5):475-485.

    6. [6]

      MA Yongning. Modification, Structural Regulation and Photocatalytic Performance of g-C3N4[D]. Xi'an: Northwest University, 2018(in Chinese).

    7. [7]

      ZHAO Yanyan, LIANG Xuhua, DENG Hanshuang. Preparation of g-C3N4 Photocatalytic Material and Degradation of Ceftriaxone Sodium in Water[J]. Mod Chem Ind, 2018,38(6):128-132.  

    8. [8]

      Wu X, Fu M, Lu P. Unique Electronic Structure of Mg/O Co-decorated Amorphous Carbon Nitride Pnhances the Photocatalytic Tetracycline Hydrochloride Degradation[J]. Chinese J Catal, 2019,40(5):776-785.

    9. [9]

      QUAN Jingjing, QIN Dongdong, TAO Chunlan. Preparation and Photoelectrochemical Properties of Au Nanorods/Graphite Phase Carbon Nitride Composites[J]. Chinese J Appl Chem, 2018,35(5):574-581.  

    10. [10]

      Li X, Bi W, Zhang L. Single-atom Pt as Co-catalyst for Enhanced Photocatalytic H2 Evolution[J]. Adv Mater, 2016,28(12):2427-2431. doi: 10.1002/adma.201505281

    11. [11]

      Anil S, Dhanasekaran P, Dattakumar M. Doubling of Photocatalytic H2 Evolution from g-C3N4 via Its Nanocomposite Formation with Multiwall Carbon Nanotubes:Electronic and Morphological Effects[J]. Int J Hydrogen Energy, 2012,37(12):9584-9589. doi: 10.1016/j.ijhydene.2012.03.123

    12. [12]

      She X, Wu J, Hui X. Enhancing Charge Density and Steering Charge Unidirectional Flow in 2D Non-metallic Semiconductor-CNTs-Metal Coupled Photocatalyst for Solar Energy Conversion[J]. Appl Catal B:Environ, 2017,202(3):112-117.  

    13. [13]

      She X, Liu L, Ji H. Template-Free Synthesis of 2D Porous Ultrathin Nonmetal-doped g-C3N4 Nanosheets with Highly Efficient Photocatalytic H2 Evolution from Water under Visible Light[J]. Appl Catal B:Environ, 2016,187(6):144-153.  

    14. [14]

      Ge L, Xu M, Fang H. Photo-Catalytic Degradation of Methyl Orange and Formaldehyde by Ag/InVO4-TiO2 Thin Films under Visible-light Irradiation[J]. J Mol Catal A, Chem, 2006,258(1):68-76.  

    15. [15]

      Lei G, Han C, Jing L. Enhanced Visible Light Photocatalytic Activity of Novel Polymeric g-C3N4 Loaded with Ag Nanoparticles[J]. Appl Catal A Gen, 2011,409(23):215-222.  

  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    3. [3]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    4. [4]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    9. [9]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    10. [10]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    11. [11]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    13. [13]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    14. [14]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    16. [16]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    17. [17]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    18. [18]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    19. [19]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    20. [20]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(14)
  • Abstract views(1785)
  • HTML views(623)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return