Citation: WANG Chunli, SUN Lianshan, ZHONG Ming, WANG Limin, CHENG Yong. Research Progress of Transition Metal and Compounds for Lithium-Sulfur Batteries[J]. Chinese Journal of Applied Chemistry, ;2020, 37(4): 387-404. doi: 10.11944/j.issn.1000-0518.2020.04.190243 shu

Research Progress of Transition Metal and Compounds for Lithium-Sulfur Batteries

  • Corresponding author: CHENG Yong, cyong@ciac.ac.cn
  • Received Date: 11 September 2019
    Revised Date: 2 November 2019
    Accepted Date: 17 December 2019

    Fund Project: the National Key Research and Development Program of China 2017YFE9128100Supported by the National Key Research and Development Program of China(No.2017YFE9128100)

Figures(10)

  • Lithium-sulfur batteries are considered to be the next-generation secondary batteries with development potentials due to high theoretical specific capacity and low cost. However, there are several limitations of the sulfur cathodes due to the insulating nature of sulfur and Li2S, the "shuttle effect" caused by the intermediate lithium polysulfides(Li2Sx, 4≤x≤8) dissolved and migrated in the electrolyte and serious side effects, resulting in low utilization of the active materials, poor cycling stability and rate performances. In this paper, the research progress of transition metal nano materials in lithium-sulfur batteries is reviewed. Especially, the synthetic methods of materials and the reaction mechanism for inhibiting the dissolution of lithium polysulfide and promoting the conversion are introduced and the development of cathode carrier materials for lithium-sulfur batteries is forecasted.
  • 加载中
    1. [1]

      Manthiram A, Fu Y, Chung S H. Rechargeable Lithium-Sulfur Batteries[J]. Chem Rev, 2014,114(23):11751-11787. doi: 10.1021/cr500062v

    2. [2]

      Seh Z W, Sun Y, Zhang Q. Designing High-Energy Lithium-Sulfur Batteries[J]. Chem Soc Rev, 2016,45(20):5605-5634.  

    3. [3]

      Boyd D A. Sulfur and Its Role In Modern Materials Science[J]. Angew Chem Int Ed, 2016,55(50):15486-15502.

    4. [4]

      Manthiram A, Chung S H, Zu C. Lithium-Sulfur Batteries:Progress and Prospects[J]. Adv Mater, 2015,27(12):1980-2006. doi: 10.1002/adma.201405115

    5. [5]

      Kamyshny A, Gun J, Rizkov D. Equilibrium Distribution of Polysulfide Ions in Aqueous Solutions at Different Temperatures by Rapid Single Phase Derivatization[J]. Environ Sci Technol, 2007,41(7):2395-2400. doi: 10.1021/es062637+

    6. [6]

      Mikhaylik Y V, Akridge J R. Polysulfide Shuttle Study in the Li/S Battery System[J]. J Electrochem Soc, 2004,151(11):A1969-A1976. doi: 10.1149/1.1806394

    7. [7]

      Shim J, Striebel K A, Cairns E J. The Lithium/Sulfur Rechargeable Cell-Effects of Electrode Composition and Solvent on Cell Performance[J]. J Electrochem Soc, 2002,149(10):A1321-A1325. doi: 10.1149/1.1503076

    8. [8]

      Ji X, Lee K T, Nazar L F. A Highly Ordered Nanostructured Carbon-Sulphur Cathode for Lithium-Sulphur Batteries[J]. Nat Mater, 2009,8(6):500-506. doi: 10.1038/nmat2460

    9. [9]

      Mi Y, Liu W, Wang Q. A Pomegranate-Structured Sulfur Cathode Material with Triple Confinement of Lithium Polysulfides for High-Performance Lithium-Sulfur Batteries[J]. J Mater Chem A, 2017,5(23):11788-11793. doi: 10.1039/C7TA00035A

    10. [10]

      Sahore R, Levin B D A, Pan M. Design Principles for Optimum Performance of Porous Carbons in Lithium-Sulfur Batteries[J]. Adv Energy Mater, 2016,6(14)1600134. doi: 10.1002/aenm.201600134

    11. [11]

      Li M, Zhang Y, Wang X. Gas Pickering Emulsion Templated Hollow Carbon for High Rate Performance Lithium Sulfur Batteries[J]. Adv Funct Mater, 2016,26(46):8408-8417. doi: 10.1002/adfm.201603241

    12. [12]

      Fang X, Weng W, Ren J. A Cable-Shaped Lithium Sulfur Battery[J]. Adv Mater, 2016,28(3):491-496. doi: 10.1002/adma.201504241

    13. [13]

      Yang J, Xie J, Zhou X. Functionalized N-Doped Porous Carbon Nanofiber Webs for a Lithium Sulfur Battery with High Capacity and Rate Performance[J]. J Phy Chem C, 2014,118(4):1800-1807. doi: 10.1021/jp410385s

    14. [14]

      Wu Y, Gao M, Li X. Preparation of Mesohollow and Microporous Carbon Nanofiber and Its Application in Cathode Material for Lithium Sulfur Batteries[J]. J Alloys Compd, 2014,608:220-228. doi: 10.1016/j.jallcom.2014.04.073

    15. [15]

      Elazari R, Salitra G, Garsuch A. Sulfur-Impregnated Activated Carbon Fiber Cloth as a Binder-Free Cathode for Rechargeable Li-S Batteries[J]. Adv Mater, 2011,23(47):5641-5644. doi: 10.1002/adma.201103274

    16. [16]

      Gueon D, Hwang J T, Yang S B. Spherical Macroporous Carbon Nanotube Particles with Ultrahigh Sulfur Loading for Lithium-Sulfur Battery Cathodes[J]. ACS Nano, 2018,12(1):226-233. doi: 10.1021/acsnano.7b05869

    17. [17]

      Yoo J, Cho S J, Jung G Y. COF-Net on CNT-Net as a Molecularly Designed, Hierarchical Porous Chemical Trap for Polysulfides in Lithium-Sulfur Batteries[J]. Nano Lett, 2016,16(5):3292-3300. doi: 10.1021/acs.nanolett.6b00870

    18. [18]

      Wang C, Zhang F, Wang X. Preparation of a Graphitic N-Doped Multi-walled Carbon Nanotube Composite for Lithium Sulfur Batteries with Long-life and High Specific Capacity[J]. RSC Adv, 2016,6(80):76568-76574. doi: 10.1039/C6RA11898D

    19. [19]

      Fei L, Li X, Bi W. Graphene/Sulfur Hybrid Nanosheets from a Space-Confined "Sauna" Reaction for High-Performance Lithium-Sulfur Batteries[J]. Adv Mater, 2015,27(39):5936-5942. doi: 10.1002/adma.201502668

    20. [20]

      Qiu Y, Li W, Zhao W. High-rate, Ultralong Cycle-life Lithium/Sulfur Batteries Enabled by Nitrogen-Doped Graphene[J]. Nano Lett, 2014,14(8):4821-4827. doi: 10.1021/nl5020475

    21. [21]

      Li Q, Mahmood N, Zhu J. Graphene and Its Composites with Nanoparticles for Electrochemical Energy Applications[J]. Nano Today, 2014,9(5):668-683. doi: 10.1016/j.nantod.2014.09.002

    22. [22]

      Al Salem H, Babu G, Rao C V. Electrocatalytic Polysulfide Traps for Controlling Redox Shuttle Process of Li-S Batteries[J]. J Am Chem Soc, 2015,137(36):11542-11545. doi: 10.1021/jacs.5b04472

    23. [23]

      Babu G, Ababtain K, Ng K Y. Electrocatalysis of Lithium Polysulfides:Current Collectors as Electrodes in Li/S Battery Configuration[J]. Sci Rep, 2015,58763. doi: 10.1038/srep08763

    24. [24]

      Lim W G, Mun Y, Cho A. Synergistic Effect of Molecular-Type Electrocatalysts with Ultrahigh Pore Volume Carbon Microspheres for Lithium-Sulfur Batteries[J]. ACS Nano, 2018,12(6):6013-6022.  

    25. [25]

      Gnana Kumar G, Chung S H, Raj Kumar T. Three-Dimensional Graphene-Carbon Nanotube Ni Hierarchical Architecture as a Polysulfide Trap for Lithium-Sulfur Batteries[J]. ACS Appl Mater Interfaces, 2018,10(24):20627-20634. doi: 10.1021/acsami.8b06054

    26. [26]

      Peng H J, Huang J Q, Liu X Y. Healing High-Loading Sulfur Electrodes with Unprecedented Long Cycling Life:Spatial Heterogeneity Control[J]. J Am Chem Soc, 2017,139(25):8458-8466. doi: 10.1021/jacs.6b12358

    27. [27]

      Yom J H, Cho S M, Hwang S W. Effects of the Pd3Co Nanoparticles-Additive on the Redox Shuttle Reaction in Rechargeable Li-S Batteries[J]. J Electrochem Soc, 2016,163(10):A2179-A2184. doi: 10.1149/2.0291610jes

    28. [28]

      Rehman S, Guo S, Hou Y. Rational Design of Si/SiO2@Hierarchical Porous Carbon Spheres as Efficient Polysulfide Reservoirs for High-Performance Li-S Battery[J]. Adv Mater, 2016,28(16):3167-3172. doi: 10.1002/adma.201506111

    29. [29]

      Zhang Z, Kong L L, Liu S. A High-Efficiency Sulfur/Carbon Composite Based on 3D Graphene Nanosheet@Carbon Nanotube Matrix as Cathode for Lithium-Sulfur Battery[J]. Adv Energy Mater, 2017,7(11)1602543. doi: 10.1002/aenm.201602543

    30. [30]

      Li Y J, Fan J M, Zheng M S. A Novel Synergistic Composite with Multi-Functional Effects for High-Performance Li-S Batteries[J]. Energy Environ Sci, 2016,9(6):1998-2004. doi: 10.1039/C6EE00104A

    31. [31]

      Li Z Q, Li C X, Ge X L. Reduced Graphene Oxide Wrapped MOFs-Derived Cobalt-Doped Porous Carbon Polyhedrons as Sulfur Immobilizers as Cathodes for High Performance Lithium Sulfur Batteries[J]. Nano Energy, 2016,23:15-26. doi: 10.1016/j.nanoen.2016.02.049

    32. [32]

      He J R, Chen Y F, Lv W G. From Metal Organic Framework to Li2S@C Co N Nanoporous Architecture:A High Capacity Cathode for Lithium Sulfur Batteries[J]. ACS Nano, 2016,10(12):10981-10987. doi: 10.1021/acsnano.6b05696

    33. [33]

      Hwang J Y, Kim H M, Lee S K. High-Energy, High-Rate, Lithium-Sulfur Batteries:Synergetic Effect of Hollow TiO2-Webbed Carbon Nanotubes and a Dual Functional Carbon-Paper Interlayer[J]. Adv Energy Mater, 2016,6(1)1501480. doi: 10.1002/aenm.201501480

    34. [34]

      Xiao Z, Yang Z, Wang L. A Lightweight TiO2/Graphene Interlayer, Applied as a Highly Effective Polysulfide Absorbent for Fast, Long-Life Lithium-Sulfur Batteries[J]. Adv Mater, 2015,27(18):2891-2898. doi: 10.1002/adma.201405637

    35. [35]

      Li C, Li Z, Li Q. MOFs Derived Hierarchically Porous TiO2 as Effective Chemical and Physical Immobilizer for Sulfur Species as Cathodes for High-Performance Lithium-Sulfur Batteries[J]. Electrochim Acta, 2016,215:689-698. doi: 10.1016/j.electacta.2016.08.044

    36. [36]

      Fang M, Chen Z, Liu Y. Design and Synthesis of Novel Sandwich-type C@TiO2@C Hollow Microspheres as Efficient Sulfur Hosts for Advanced Lithium-Sulfur Batteries[J]. J Mater Chem A, 2018,6(4):1630-1638. doi: 10.1039/C7TA08864G

    37. [37]

      Xiao Z, Yang Z, Wang L. A Lightweight TiO2/Graphene Interlayer, Applied as a Highly Effective Polysulfide Absorbent for Fast, Long-Life Lithium-Sulfur Batteries[J]. Adv Mater, 2015,27(18):2891-2898. doi: 10.1002/adma.201405637

    38. [38]

      Li Z, Zhang J, Lou X W. Hollow Carbon Nanofibers Filled with MnO2 Nanosheets as Efficient Sulfur Hosts for Lithium-Sulfur Batteries[J]. Angew Chem Int Ed, 2015,54(44):12886-12890. doi: 10.1002/anie.201506972

    39. [39]

      Ni L, Wu Z, Zhao G. Core-Shell Structure and Interaction Mechanism of gamma-MnO2 Coated Sulfur for Improved Lithium-Sulfur Batteries[J]. Small, 2017,13(14)1603466. doi: 10.1002/smll.201603466

    40. [40]

      Zhang J, Shi Y, Ding Y. In Situ Reactive Synthesis of Polypyrrole-MnO2 Coaxial Nanotubes as Sulfur Hosts for High-Performance Lithium-Sulfur Battery[J]. Nano Lett, 2016,16(11):7276-7281. doi: 10.1021/acs.nanolett.6b03849

    41. [41]

      Wang X, Li G, Li J. Structural and Chemical Synergistic Encapsulation of Polysulfides Enables Ultralong-Life Lithium-Sulfur Batteries[J]. Energy Environ Sci, 2016,9(8):2533-2538. doi: 10.1039/C6EE00194G

    42. [42]

      Liang X, Nazar L F. In Situ Reactive Assembly of Scalable Core-Shell Sulfur-MnO2 Composite Cathodes[J]. ACS Nano, 2016,10(4):4192-4198. doi: 10.1021/acsnano.5b07458

    43. [43]

      Zhao D, Qin J, Zheng L. Amorphous Vanadium Oxide/Molybdenum Oxide Hybrid with Three-Dimensional Ordered Hierarchically Porous Structure as a High-Performance Li-Ion Battery Anode[J]. Chem Mater, 2016,28(12):4180-4190. doi: 10.1021/acs.chemmater.6b00414

    44. [44]

      Liang X, Hart C, Pang Q. A Highly Efficient Polysulfide Mediator for Lithium-Sulfur Batteries[J]. Nat Commun, 2015,6(1)6682. doi: 10.1038/ncomms7682

    45. [45]

      Sarish T T, Zeeshan A, Huang X X. Integrated Design of MnO2@Carbon Hollow Nanoboxes to Synergistically Encapsulate Polysulfides for Empowering Lithium Sulfur Batteries[J]. Small, 2017,13(20)1700087. doi: 10.1002/smll.201700087

    46. [46]

      Liang X, Nazar L F. In Situ Reactive Assembly of Scalable Core-Shell Sulfur-MnO2 Composite Cathodes[J]. ACS Nano, 2016,10(4):4192-4198. doi: 10.1021/acsnano.5b07458

    47. [47]

      Pu J, Shen Z, Zheng J. Multifunctional Co3S4@Sulfur Nanotubes for Enhanced Lithium-Sulfur Battery Performance[J]. Nano Energy, 2017,37:7-14.  

    48. [48]

      Carter R, Oakes L, Muralidharan N. Polysulfide Anchoring Mechanism Revealed by Atomic Layer Deposition of V2O5 and Sulfur-Filled Carbon Nanotubes for Lithium Sulfur Batteries[J]. ACS Appl Mater Interfaces, 2017,9(8):7185-7192. doi: 10.1021/acsami.6b16155

    49. [49]

      Wang C, Li K, Zhang F. Insight of Enhanced Redox Chemistry for Porous MoO2 Carbon-Derived Framework as Polysulfide Reservoir in Lithium-Sulfur Batteries[J]. ACS Appl Mater Inter, 2018,10(49):42286-42293.  

    50. [50]

      Wang C, Sun L, Wang X. Spherical Hybrid Hierarchical Porous Structure:A Plastic Model with Tunable Inner Pores for Lithium-Sulfur Batteries[J]. Carbon, 2019,153:691-698. doi: 10.1016/j.carbon.2019.07.055

    51. [51]

      Xiang M W, Wu H, Liu H. A Flexible 3D Multifunctional MgO-Decorated Carbon Foam@CNTs Hybrid as Self-Supported Cathode for High-Performance Lithium-Sulfur Batteries[J]. Adv Funct Mater, 2017,27(37)1702573.  

    52. [52]

      Tao X, Wang J, Liu C. Balancing Surface Adsorption and Diffusion of Lithium-Polysulfides on Nonconductive Oxides for Lithium-Sulfur Battery Design[J]. Nat Commun, 2016,711203. doi: 10.1038/ncomms11203

    53. [53]

      Liang X, Hart C, Pang Q. A Highly Efficient Polysulfide Mediator for Lithium-Sulfur Batteries[J]. Nat Commun, 2015,65682. doi: 10.1038/ncomms6682

    54. [54]

      Li Z, Zhang J T, Lou X W. Hollow Carbon Nanofibers Filled with MnO2 Nanosheets as Efficient Sulfur Hosts for Lithium-Sulfur Batteries[J]. Angew Chem Int Ed, 2015,54(44):12886-12890. doi: 10.1002/anie.201506972

    55. [55]

      Wei H, Rodriguez E F, Best A S. Chemical Bonding and Physical Trapping of Sulfur in Mesoporous Magneli Ti4O7 Microspheres for High-Performance Li-S Battery[J]. Adv Energy Mater, 2017,7(4)1601616. doi: 10.1002/aenm.201601616

    56. [56]

      Tao Y Q, Wei Y J, Liu Y. Kinetically-Enhanced Polysulfide Redox Reactions by Nb2O5 Nanocrystals for High-Rate Lithium-Sulfur Battery[J]. Energy Environ Sci, 2016,9(10):3230-3239. doi: 10.1039/C6EE01662F

    57. [57]

      Xu M, Liang T, Shi M. Graphene-Like Two-Dimensional Materials[J]. Chem Rev, 2013,113(5):3766-3798. doi: 10.1021/cr300263a

    58. [58]

      Raybaud P, Kresse G, Hafner J. Ab Initio Density Functional Studies of Transition-Metal Sulphides:I.Crystal Structure and Cohesive Properties[J]. J Phys Condens Matter, 1997,9(50):11085-00106. doi: 10.1088/0953-8984/9/50/013

    59. [59]

      Rohrbach A, Hafner J, Kresse G. Electronic Correlation Effects in Transition-Metal Sulfides[J]. J Phys Condens Matter, 2003,15(6):979-996. doi: 10.1088/0953-8984/15/6/325

    60. [60]

      Chung S H, Luo L, Manthiram A. TiS2-Polysulfide Hybrid Cathode with High Sulfur Loading and Low Electrolyte Consumption for Lithium-Sulfur Batteries[J]. ACS Energy Lett, 2018,3(3):568-573. doi: 10.1021/acsenergylett.7b01321

    61. [61]

      Cheng Z, Xiao Z, Pan H. Elastic Sandwich-Type rGO-VS2/S Composites with High Tap Density:Structural and Chemical Cooperativity Enabling Lithium-Sulfur Batteries with High Energy Density[J]. Adv Energy Mater, 2018,8(10)1702337. doi: 10.1002/aenm.201702337

    62. [62]

      Xiao Z, Yang Z, Zhang L. Sandwich-Type NbS2@S@I-Doped Graphene for High-Sulfur-Loaded, Ultrahigh-Rate, and Long-Life Lithium-Sulfur Batteries[J]. ACS Nano, 2017,11(8):8488-8498. doi: 10.1021/acsnano.7b04442

    63. [63]

      Chen T, Zhang Z, Cheng B. Self-Templated Formation of Interlaced Carbon Nanotubes Threaded Hollow Co3S4 Nanoboxes for High-Rate and Heat-Resistant Lithium-Sulfur Batteries[J]. J Am Chem Soc, 2017,139(36):12710-12715. doi: 10.1021/jacs.7b06973

    64. [64]

      Lu Y, Li X, Liang J. A Simple Melting-Diffusing-Reacting Strategy to Fabricate S/NiS2-C for Lithium-Sulfur Batteries[J]. Nanoscale, 2016,8(40):17616-17622. doi: 10.1039/C6NR05626A

    65. [65]

      Seh Z W, Yu J H, Li W Y. Two-Dimensional Layered Transition Metal Disulphides for Effective Encapsulation of High-Capacity Lithium Sulphide Cathodes[J]. Nat Commun, 2014,5(8)5017.

    66. [66]

      Zhou G, Tian H, Jin Y. Catalytic Oxidation of Li2S on the Surface of Metal Sulfides for Li-S Batteries[J]. Proc Natl Acad Sci, 2017,114(5):840-845. doi: 10.1073/pnas.1615837114

    67. [67]

      Pu J, Shen Z H, Zheng J X. Multifunctional Co3S4@Sulfur Nanotubes for Enhanced Lithium-Sulfur Battery Performance[J]. Nano Energy, 2017,37:7-14. doi: 10.1016/j.nanoen.2017.05.009

    68. [68]

      Pang Q, Kundu D, Nazar L F. A Graphene-Like Metallic Cathode Host for Long-Life and High-Loading Lithium-Sulfur Batteries[J]. Mater Horiz, 2016,3(2):130-136.  

    69. [69]

      Yuan Z, Peng H J, Hou T Z. Powering Lithium-Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts[J]. Nano Lett, 2016,16(1):519-527. doi: 10.1021/acs.nanolett.5b04166

    70. [70]

      Tang W, Chen Z, Zheng G. In Situ Observation and Electrochemical Study of Encapsulated Sulfur Nanoparticles by MoS2 Flakes[J]. J Am Chem Soc, 2017,139(29):10133-10141. doi: 10.1021/jacs.7b05371

    71. [71]

      Wang H, Zhang Q, Yao H. High Electrochemical Selectivity of Edge versus Terrace Sites in Two-Dimensional Layered MoS2 Materials[J]. Nano Lett, 2014,14(12):7138-7144. doi: 10.1021/nl503730c

    72. [72]

      Babu G, Masurkar N, Al Salem H. Transition Metal Dichalcogenide Atomic Layers for Lithium Polysulfides Electrocatalysis[J]. J Am Chem Soc, 2017,139(1):171-178. doi: 10.1021/jacs.6b08681

    73. [73]

      Park J, Yu B C, Park J S. Tungsten Disulfide Catalysts Supported on a Carbon Cloth Interlayer for High Performance Li-S Battery[J]. Adv Energy Mater, 2017,7(11)1602567. doi: 10.1002/aenm.201602567

    74. [74]

      Zhou G M, Tian H Z, Jin Y. Catalytic Oxidation of Li2S on the Surface of Metal Sulfides for Li-S Batteries[J]. Proc Natl Acad Sci, 2017,114(5):840-845.

    75. [75]

      Niu X Q, Wang X L, Wang D H. Metal Hydroxide a New Stabilizer for the Construction of Sulfur/Carbon Composites as High-Performance Cathode Materials for Lithium-Sulfur Batteries[J]. J Mater Chem A, 2015,3(33):17106-17112. doi: 10.1039/C5TA03062E

    76. [76]

      Jiang J, Zhu J H, Ai W. Encapsulation of Sulfur with Thin-Layered Nickel-Based Hydroxides for Long-Cyclic Lithium-Sulfur Cells[J]. Nat Commun, 2015,6(9)8622.  

    77. [77]

      Zhang J T, Hu H, Li Z. Double-Shelled Nanocages with Cobalt Hydroxide Inner Shell and Layered Double Hydroxides Outer Shell as High-Efficiency Polysulfide Mediator for Lithium-Sulfur Batteries[J]. Angew Chem Int Ed, 2016,55(12):3982-3986. doi: 10.1002/anie.201511632

    78. [78]

      Dai C, Hu L, Wang M Q. Uniform α-Ni(OH)2 Hollow Spheres Constructed from Ultrathin Nanosheets as Efficient Polysulfide Mediator for Long-Term Lithium-Sulfur Batteries[J]. Energy Storage Mater, 2017,8:202-208. doi: 10.1016/j.ensm.2017.04.003

    79. [79]

      Brik M G, Ma C G. First-Principles Studies of the Electronic and Elastic Properties of Metal Nitrides XN(X=Sc, Ti, V, Cr, Zr, Nb)[J]. Comput Mater Sci, 2012,51(1):380-388. doi: 10.1016/j.commatsci.2011.08.008

    80. [80]

      Milosev I, Strehblow H H, Navinsek B. Electrochemical and Thermal-Oxidation of Tin Coatings Studied by XPS[J]. Surf Interface Anal, 1995,23(7/8):529-539.  

    81. [81]

      Cui Z M, Zu C X, Zhou W D. Mesoporous Titanium Nitride-Enabled Highly Stable Lithium-Sulfur Batteries[J]. Adv Mater, 2016,28(32):6926-6931. doi: 10.1002/adma.201601382

    82. [82]

      Sun Z H, Zhang J Q, Yin L C. Conductive Porous Vanadium Nitride/Graphene Composite as Chemical Anchor of Polysulfides for Lithium-Sulfur Batteries[J]. Nat Commun, 2017,814627. doi: 10.1038/ncomms14627

    83. [83]

      Deng D R, Xue F, Jia Y J. Co4N Nanosheet Assembled Mesoporous Sphere as a Matrix for Ultrahigh Sulfur Content Lithium-Sulfur Batteries[J]. ACS Nano, 2017,11(6):6031-6039. doi: 10.1021/acsnano.7b01945

    84. [84]

      Bao W, Liu L, Wang C. Facile Synthesis of Crumpled Nitrogen-Doped MXene Nanosheets as a New Sulfur Host for Lithium-Sulfur Batteries[J]. Adv Energy Mater, 2018,8(13)1702485. doi: 10.1002/aenm.201702485

    85. [85]

      Liang X, Rangom Y, Kwok C Y. Interwoven MXene Nanosheet/Carbon-Nanotube Composites as Li-S Cathode Hosts[J]. Adv Mater, 2017,29(3)1603040. doi: 10.1002/adma.201603040

    86. [86]

      Bao W Z, Su D W, Zhang W X. 3D Metal Carbide@Mesoporous Carbon Hybrid Architecture as a New Polysulfide Reservoir for Lithium-Sulfur Batteries[J]. Adv Funct Mater, 2016,26(47):8746-8756. doi: 10.1002/adfm.201603704

    87. [87]

      Zhou F, Li Z, Luo X. Low Cost Metal Carbide Nanocrystals as Binding and Electrocatalytic Sites for High Performance Li-S Batteries[J]. Nano Lett, 2018,18(2):1035-1043. doi: 10.1021/acs.nanolett.7b04505

    88. [88]

      Choi J, Jeong T G, Cho B W. Tungsten Carbide as a Highly Efficient Catalyst for Polysulfide Fragmentations in Li-S Batteries[J]. J Phys Chem C, 2018,122(14):7664-7669. doi: 10.1021/acs.jpcc.8b02096

    89. [89]

      Su D, Cortie M, Wang G. Fabrication of N-doped Graphene-Carbon Nanotube Hybrids from Prussian Blue for Lithium-Sulfur Batteries[J]. Adv Energy Mater, 2017,7(8)1602014. doi: 10.1002/aenm.201602014

    90. [90]

      Jiang H, Liu X C, Wu Y. Metal-Organic Frameworks for High Charge-Discharge Rates in Lithium-Sulfur Batteries[J]. Angew Chem Int Ed, 2018,57(15):3916-3921. doi: 10.1002/anie.201712872

    91. [91]

      Hong X J, Tan T X, Guo Y K. Confinement of Polysulfides within Bi-Functional Metal-Organic Frameworks for High Performance Lithium-Sulfur Batteries[J]. Nanoscale, 2018,10(6):2774-2780. doi: 10.1039/C7NR07118C

    92. [92]

      Park H, Siegel D J. Tuning the Adsorption of Polysulfides in Lithium Sulfur Batteries with Metal-Organic Frameworks[J]. Chem Mater, 2017,29(11):4932-4937. doi: 10.1021/acs.chemmater.7b01166

    93. [93]

      Wang Z, Wang B, Yang Y. Mixed-Metal-Organic Framework with Effective Lewis Acidic Sites for Sulfur Confinement in High-Performance Lithium-Sulfur Batteries[J]. ACS Appl Mater Interfaces, 2015,7(37):20999-21004. doi: 10.1021/acsami.5b07024

    94. [94]

      Zhou J, Li R, Fan X. Rational Design of a Metal-Organic Framework Host for Sulfur Storage in Fast, Long-Cycle Li-S Batteries[J]. Energy Environ Sci, 2014,7(8):2715-2724. doi: 10.1039/C4EE01382D

    95. [95]

      Liu Y, Li G, Fu J. Strings of Porous Carbon Polyhedrons as Self-Standing Cathode Host for High-Energy-Density Lithium-Sulfur Batteries[J]. Angew Chem Int Ed, 2017,56(22):6176-6180. doi: 10.1002/anie.201700686

    96. [96]

      Chen X, Ding X, Wang C. A Multi-Shelled CoP Nanosphere Modified Separator for Highly Efficient Li-S Batteries[J]. Nanoscale, 2018,10(28):13694-13701. doi: 10.1039/C8NR03854F

    97. [97]

      Fan C Y, Zheng Y P, Zhang X H. High-Performance and Low-Temperature Lithium-Sulfur Batteries:Synergism of Thermodynamic and Kinetic Regulation[J]. Adv Energy Mater, 2018,8(18)1703638. doi: 10.1002/aenm.201703638

  • 加载中
    1. [1]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    2. [2]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    3. [3]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    4. [4]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    7. [7]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    8. [8]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    11. [11]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    12. [12]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    13. [13]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    14. [14]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    15. [15]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    16. [16]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    19. [19]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    20. [20]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

Metrics
  • PDF Downloads(18)
  • Abstract views(983)
  • HTML views(331)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return