Research Progress of Transition Metal and Compounds for Lithium-Sulfur Batteries
- Corresponding author: CHENG Yong, cyong@ciac.ac.cn
Citation:
WANG Chunli, SUN Lianshan, ZHONG Ming, WANG Limin, CHENG Yong. Research Progress of Transition Metal and Compounds for Lithium-Sulfur Batteries[J]. Chinese Journal of Applied Chemistry,
;2020, 37(4): 387-404.
doi:
10.11944/j.issn.1000-0518.2020.04.190243
Manthiram A, Fu Y, Chung S H. Rechargeable Lithium-Sulfur Batteries[J]. Chem Rev, 2014,114(23):11751-11787. doi: 10.1021/cr500062v
Seh Z W, Sun Y, Zhang Q. Designing High-Energy Lithium-Sulfur Batteries[J]. Chem Soc Rev, 2016,45(20):5605-5634.
Boyd D A. Sulfur and Its Role In Modern Materials Science[J]. Angew Chem Int Ed, 2016,55(50):15486-15502.
Manthiram A, Chung S H, Zu C. Lithium-Sulfur Batteries:Progress and Prospects[J]. Adv Mater, 2015,27(12):1980-2006. doi: 10.1002/adma.201405115
Kamyshny A, Gun J, Rizkov D. Equilibrium Distribution of Polysulfide Ions in Aqueous Solutions at Different Temperatures by Rapid Single Phase Derivatization[J]. Environ Sci Technol, 2007,41(7):2395-2400. doi: 10.1021/es062637+
Mikhaylik Y V, Akridge J R. Polysulfide Shuttle Study in the Li/S Battery System[J]. J Electrochem Soc, 2004,151(11):A1969-A1976. doi: 10.1149/1.1806394
Shim J, Striebel K A, Cairns E J. The Lithium/Sulfur Rechargeable Cell-Effects of Electrode Composition and Solvent on Cell Performance[J]. J Electrochem Soc, 2002,149(10):A1321-A1325. doi: 10.1149/1.1503076
Ji X, Lee K T, Nazar L F. A Highly Ordered Nanostructured Carbon-Sulphur Cathode for Lithium-Sulphur Batteries[J]. Nat Mater, 2009,8(6):500-506. doi: 10.1038/nmat2460
Mi Y, Liu W, Wang Q. A Pomegranate-Structured Sulfur Cathode Material with Triple Confinement of Lithium Polysulfides for High-Performance Lithium-Sulfur Batteries[J]. J Mater Chem A, 2017,5(23):11788-11793. doi: 10.1039/C7TA00035A
Sahore R, Levin B D A, Pan M. Design Principles for Optimum Performance of Porous Carbons in Lithium-Sulfur Batteries[J]. Adv Energy Mater, 2016,6(14)1600134. doi: 10.1002/aenm.201600134
Li M, Zhang Y, Wang X. Gas Pickering Emulsion Templated Hollow Carbon for High Rate Performance Lithium Sulfur Batteries[J]. Adv Funct Mater, 2016,26(46):8408-8417. doi: 10.1002/adfm.201603241
Fang X, Weng W, Ren J. A Cable-Shaped Lithium Sulfur Battery[J]. Adv Mater, 2016,28(3):491-496. doi: 10.1002/adma.201504241
Yang J, Xie J, Zhou X. Functionalized N-Doped Porous Carbon Nanofiber Webs for a Lithium Sulfur Battery with High Capacity and Rate Performance[J]. J Phy Chem C, 2014,118(4):1800-1807. doi: 10.1021/jp410385s
Wu Y, Gao M, Li X. Preparation of Mesohollow and Microporous Carbon Nanofiber and Its Application in Cathode Material for Lithium Sulfur Batteries[J]. J Alloys Compd, 2014,608:220-228. doi: 10.1016/j.jallcom.2014.04.073
Elazari R, Salitra G, Garsuch A. Sulfur-Impregnated Activated Carbon Fiber Cloth as a Binder-Free Cathode for Rechargeable Li-S Batteries[J]. Adv Mater, 2011,23(47):5641-5644. doi: 10.1002/adma.201103274
Gueon D, Hwang J T, Yang S B. Spherical Macroporous Carbon Nanotube Particles with Ultrahigh Sulfur Loading for Lithium-Sulfur Battery Cathodes[J]. ACS Nano, 2018,12(1):226-233. doi: 10.1021/acsnano.7b05869
Yoo J, Cho S J, Jung G Y. COF-Net on CNT-Net as a Molecularly Designed, Hierarchical Porous Chemical Trap for Polysulfides in Lithium-Sulfur Batteries[J]. Nano Lett, 2016,16(5):3292-3300. doi: 10.1021/acs.nanolett.6b00870
Wang C, Zhang F, Wang X. Preparation of a Graphitic N-Doped Multi-walled Carbon Nanotube Composite for Lithium Sulfur Batteries with Long-life and High Specific Capacity[J]. RSC Adv, 2016,6(80):76568-76574. doi: 10.1039/C6RA11898D
Fei L, Li X, Bi W. Graphene/Sulfur Hybrid Nanosheets from a Space-Confined "Sauna" Reaction for High-Performance Lithium-Sulfur Batteries[J]. Adv Mater, 2015,27(39):5936-5942. doi: 10.1002/adma.201502668
Qiu Y, Li W, Zhao W. High-rate, Ultralong Cycle-life Lithium/Sulfur Batteries Enabled by Nitrogen-Doped Graphene[J]. Nano Lett, 2014,14(8):4821-4827. doi: 10.1021/nl5020475
Li Q, Mahmood N, Zhu J. Graphene and Its Composites with Nanoparticles for Electrochemical Energy Applications[J]. Nano Today, 2014,9(5):668-683. doi: 10.1016/j.nantod.2014.09.002
Al Salem H, Babu G, Rao C V. Electrocatalytic Polysulfide Traps for Controlling Redox Shuttle Process of Li-S Batteries[J]. J Am Chem Soc, 2015,137(36):11542-11545. doi: 10.1021/jacs.5b04472
Babu G, Ababtain K, Ng K Y. Electrocatalysis of Lithium Polysulfides:Current Collectors as Electrodes in Li/S Battery Configuration[J]. Sci Rep, 2015,58763. doi: 10.1038/srep08763
Lim W G, Mun Y, Cho A. Synergistic Effect of Molecular-Type Electrocatalysts with Ultrahigh Pore Volume Carbon Microspheres for Lithium-Sulfur Batteries[J]. ACS Nano, 2018,12(6):6013-6022.
Gnana Kumar G, Chung S H, Raj Kumar T. Three-Dimensional Graphene-Carbon Nanotube Ni Hierarchical Architecture as a Polysulfide Trap for Lithium-Sulfur Batteries[J]. ACS Appl Mater Interfaces, 2018,10(24):20627-20634. doi: 10.1021/acsami.8b06054
Peng H J, Huang J Q, Liu X Y. Healing High-Loading Sulfur Electrodes with Unprecedented Long Cycling Life:Spatial Heterogeneity Control[J]. J Am Chem Soc, 2017,139(25):8458-8466. doi: 10.1021/jacs.6b12358
Yom J H, Cho S M, Hwang S W. Effects of the Pd3Co Nanoparticles-Additive on the Redox Shuttle Reaction in Rechargeable Li-S Batteries[J]. J Electrochem Soc, 2016,163(10):A2179-A2184. doi: 10.1149/2.0291610jes
Rehman S, Guo S, Hou Y. Rational Design of Si/SiO2@Hierarchical Porous Carbon Spheres as Efficient Polysulfide Reservoirs for High-Performance Li-S Battery[J]. Adv Mater, 2016,28(16):3167-3172. doi: 10.1002/adma.201506111
Zhang Z, Kong L L, Liu S. A High-Efficiency Sulfur/Carbon Composite Based on 3D Graphene Nanosheet@Carbon Nanotube Matrix as Cathode for Lithium-Sulfur Battery[J]. Adv Energy Mater, 2017,7(11)1602543. doi: 10.1002/aenm.201602543
Li Y J, Fan J M, Zheng M S. A Novel Synergistic Composite with Multi-Functional Effects for High-Performance Li-S Batteries[J]. Energy Environ Sci, 2016,9(6):1998-2004. doi: 10.1039/C6EE00104A
Li Z Q, Li C X, Ge X L. Reduced Graphene Oxide Wrapped MOFs-Derived Cobalt-Doped Porous Carbon Polyhedrons as Sulfur Immobilizers as Cathodes for High Performance Lithium Sulfur Batteries[J]. Nano Energy, 2016,23:15-26. doi: 10.1016/j.nanoen.2016.02.049
He J R, Chen Y F, Lv W G. From Metal Organic Framework to Li2S@C Co N Nanoporous Architecture:A High Capacity Cathode for Lithium Sulfur Batteries[J]. ACS Nano, 2016,10(12):10981-10987. doi: 10.1021/acsnano.6b05696
Hwang J Y, Kim H M, Lee S K. High-Energy, High-Rate, Lithium-Sulfur Batteries:Synergetic Effect of Hollow TiO2-Webbed Carbon Nanotubes and a Dual Functional Carbon-Paper Interlayer[J]. Adv Energy Mater, 2016,6(1)1501480. doi: 10.1002/aenm.201501480
Xiao Z, Yang Z, Wang L. A Lightweight TiO2/Graphene Interlayer, Applied as a Highly Effective Polysulfide Absorbent for Fast, Long-Life Lithium-Sulfur Batteries[J]. Adv Mater, 2015,27(18):2891-2898. doi: 10.1002/adma.201405637
Li C, Li Z, Li Q. MOFs Derived Hierarchically Porous TiO2 as Effective Chemical and Physical Immobilizer for Sulfur Species as Cathodes for High-Performance Lithium-Sulfur Batteries[J]. Electrochim Acta, 2016,215:689-698. doi: 10.1016/j.electacta.2016.08.044
Fang M, Chen Z, Liu Y. Design and Synthesis of Novel Sandwich-type C@TiO2@C Hollow Microspheres as Efficient Sulfur Hosts for Advanced Lithium-Sulfur Batteries[J]. J Mater Chem A, 2018,6(4):1630-1638. doi: 10.1039/C7TA08864G
Xiao Z, Yang Z, Wang L. A Lightweight TiO2/Graphene Interlayer, Applied as a Highly Effective Polysulfide Absorbent for Fast, Long-Life Lithium-Sulfur Batteries[J]. Adv Mater, 2015,27(18):2891-2898. doi: 10.1002/adma.201405637
Li Z, Zhang J, Lou X W. Hollow Carbon Nanofibers Filled with MnO2 Nanosheets as Efficient Sulfur Hosts for Lithium-Sulfur Batteries[J]. Angew Chem Int Ed, 2015,54(44):12886-12890. doi: 10.1002/anie.201506972
Ni L, Wu Z, Zhao G. Core-Shell Structure and Interaction Mechanism of gamma-MnO2 Coated Sulfur for Improved Lithium-Sulfur Batteries[J]. Small, 2017,13(14)1603466. doi: 10.1002/smll.201603466
Zhang J, Shi Y, Ding Y. In Situ Reactive Synthesis of Polypyrrole-MnO2 Coaxial Nanotubes as Sulfur Hosts for High-Performance Lithium-Sulfur Battery[J]. Nano Lett, 2016,16(11):7276-7281. doi: 10.1021/acs.nanolett.6b03849
Wang X, Li G, Li J. Structural and Chemical Synergistic Encapsulation of Polysulfides Enables Ultralong-Life Lithium-Sulfur Batteries[J]. Energy Environ Sci, 2016,9(8):2533-2538. doi: 10.1039/C6EE00194G
Liang X, Nazar L F. In Situ Reactive Assembly of Scalable Core-Shell Sulfur-MnO2 Composite Cathodes[J]. ACS Nano, 2016,10(4):4192-4198. doi: 10.1021/acsnano.5b07458
Zhao D, Qin J, Zheng L. Amorphous Vanadium Oxide/Molybdenum Oxide Hybrid with Three-Dimensional Ordered Hierarchically Porous Structure as a High-Performance Li-Ion Battery Anode[J]. Chem Mater, 2016,28(12):4180-4190. doi: 10.1021/acs.chemmater.6b00414
Liang X, Hart C, Pang Q. A Highly Efficient Polysulfide Mediator for Lithium-Sulfur Batteries[J]. Nat Commun, 2015,6(1)6682. doi: 10.1038/ncomms7682
Sarish T T, Zeeshan A, Huang X X. Integrated Design of MnO2@Carbon Hollow Nanoboxes to Synergistically Encapsulate Polysulfides for Empowering Lithium Sulfur Batteries[J]. Small, 2017,13(20)1700087. doi: 10.1002/smll.201700087
Liang X, Nazar L F. In Situ Reactive Assembly of Scalable Core-Shell Sulfur-MnO2 Composite Cathodes[J]. ACS Nano, 2016,10(4):4192-4198. doi: 10.1021/acsnano.5b07458
Pu J, Shen Z, Zheng J. Multifunctional Co3S4@Sulfur Nanotubes for Enhanced Lithium-Sulfur Battery Performance[J]. Nano Energy, 2017,37:7-14.
Carter R, Oakes L, Muralidharan N. Polysulfide Anchoring Mechanism Revealed by Atomic Layer Deposition of V2O5 and Sulfur-Filled Carbon Nanotubes for Lithium Sulfur Batteries[J]. ACS Appl Mater Interfaces, 2017,9(8):7185-7192. doi: 10.1021/acsami.6b16155
Wang C, Li K, Zhang F. Insight of Enhanced Redox Chemistry for Porous MoO2 Carbon-Derived Framework as Polysulfide Reservoir in Lithium-Sulfur Batteries[J]. ACS Appl Mater Inter, 2018,10(49):42286-42293.
Wang C, Sun L, Wang X. Spherical Hybrid Hierarchical Porous Structure:A Plastic Model with Tunable Inner Pores for Lithium-Sulfur Batteries[J]. Carbon, 2019,153:691-698. doi: 10.1016/j.carbon.2019.07.055
Xiang M W, Wu H, Liu H. A Flexible 3D Multifunctional MgO-Decorated Carbon Foam@CNTs Hybrid as Self-Supported Cathode for High-Performance Lithium-Sulfur Batteries[J]. Adv Funct Mater, 2017,27(37)1702573.
Tao X, Wang J, Liu C. Balancing Surface Adsorption and Diffusion of Lithium-Polysulfides on Nonconductive Oxides for Lithium-Sulfur Battery Design[J]. Nat Commun, 2016,711203. doi: 10.1038/ncomms11203
Liang X, Hart C, Pang Q. A Highly Efficient Polysulfide Mediator for Lithium-Sulfur Batteries[J]. Nat Commun, 2015,65682. doi: 10.1038/ncomms6682
Li Z, Zhang J T, Lou X W. Hollow Carbon Nanofibers Filled with MnO2 Nanosheets as Efficient Sulfur Hosts for Lithium-Sulfur Batteries[J]. Angew Chem Int Ed, 2015,54(44):12886-12890. doi: 10.1002/anie.201506972
Wei H, Rodriguez E F, Best A S. Chemical Bonding and Physical Trapping of Sulfur in Mesoporous Magneli Ti4O7 Microspheres for High-Performance Li-S Battery[J]. Adv Energy Mater, 2017,7(4)1601616. doi: 10.1002/aenm.201601616
Tao Y Q, Wei Y J, Liu Y. Kinetically-Enhanced Polysulfide Redox Reactions by Nb2O5 Nanocrystals for High-Rate Lithium-Sulfur Battery[J]. Energy Environ Sci, 2016,9(10):3230-3239. doi: 10.1039/C6EE01662F
Xu M, Liang T, Shi M. Graphene-Like Two-Dimensional Materials[J]. Chem Rev, 2013,113(5):3766-3798. doi: 10.1021/cr300263a
Raybaud P, Kresse G, Hafner J. Ab Initio Density Functional Studies of Transition-Metal Sulphides:I.Crystal Structure and Cohesive Properties[J]. J Phys Condens Matter, 1997,9(50):11085-00106. doi: 10.1088/0953-8984/9/50/013
Rohrbach A, Hafner J, Kresse G. Electronic Correlation Effects in Transition-Metal Sulfides[J]. J Phys Condens Matter, 2003,15(6):979-996. doi: 10.1088/0953-8984/15/6/325
Chung S H, Luo L, Manthiram A. TiS2-Polysulfide Hybrid Cathode with High Sulfur Loading and Low Electrolyte Consumption for Lithium-Sulfur Batteries[J]. ACS Energy Lett, 2018,3(3):568-573. doi: 10.1021/acsenergylett.7b01321
Cheng Z, Xiao Z, Pan H. Elastic Sandwich-Type rGO-VS2/S Composites with High Tap Density:Structural and Chemical Cooperativity Enabling Lithium-Sulfur Batteries with High Energy Density[J]. Adv Energy Mater, 2018,8(10)1702337. doi: 10.1002/aenm.201702337
Xiao Z, Yang Z, Zhang L. Sandwich-Type NbS2@S@I-Doped Graphene for High-Sulfur-Loaded, Ultrahigh-Rate, and Long-Life Lithium-Sulfur Batteries[J]. ACS Nano, 2017,11(8):8488-8498. doi: 10.1021/acsnano.7b04442
Chen T, Zhang Z, Cheng B. Self-Templated Formation of Interlaced Carbon Nanotubes Threaded Hollow Co3S4 Nanoboxes for High-Rate and Heat-Resistant Lithium-Sulfur Batteries[J]. J Am Chem Soc, 2017,139(36):12710-12715. doi: 10.1021/jacs.7b06973
Lu Y, Li X, Liang J. A Simple Melting-Diffusing-Reacting Strategy to Fabricate S/NiS2-C for Lithium-Sulfur Batteries[J]. Nanoscale, 2016,8(40):17616-17622. doi: 10.1039/C6NR05626A
Seh Z W, Yu J H, Li W Y. Two-Dimensional Layered Transition Metal Disulphides for Effective Encapsulation of High-Capacity Lithium Sulphide Cathodes[J]. Nat Commun, 2014,5(8)5017.
Zhou G, Tian H, Jin Y. Catalytic Oxidation of Li2S on the Surface of Metal Sulfides for Li-S Batteries[J]. Proc Natl Acad Sci, 2017,114(5):840-845. doi: 10.1073/pnas.1615837114
Pu J, Shen Z H, Zheng J X. Multifunctional Co3S4@Sulfur Nanotubes for Enhanced Lithium-Sulfur Battery Performance[J]. Nano Energy, 2017,37:7-14. doi: 10.1016/j.nanoen.2017.05.009
Pang Q, Kundu D, Nazar L F. A Graphene-Like Metallic Cathode Host for Long-Life and High-Loading Lithium-Sulfur Batteries[J]. Mater Horiz, 2016,3(2):130-136.
Yuan Z, Peng H J, Hou T Z. Powering Lithium-Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts[J]. Nano Lett, 2016,16(1):519-527. doi: 10.1021/acs.nanolett.5b04166
Tang W, Chen Z, Zheng G. In Situ Observation and Electrochemical Study of Encapsulated Sulfur Nanoparticles by MoS2 Flakes[J]. J Am Chem Soc, 2017,139(29):10133-10141. doi: 10.1021/jacs.7b05371
Wang H, Zhang Q, Yao H. High Electrochemical Selectivity of Edge versus Terrace Sites in Two-Dimensional Layered MoS2 Materials[J]. Nano Lett, 2014,14(12):7138-7144. doi: 10.1021/nl503730c
Babu G, Masurkar N, Al Salem H. Transition Metal Dichalcogenide Atomic Layers for Lithium Polysulfides Electrocatalysis[J]. J Am Chem Soc, 2017,139(1):171-178. doi: 10.1021/jacs.6b08681
Park J, Yu B C, Park J S. Tungsten Disulfide Catalysts Supported on a Carbon Cloth Interlayer for High Performance Li-S Battery[J]. Adv Energy Mater, 2017,7(11)1602567. doi: 10.1002/aenm.201602567
Zhou G M, Tian H Z, Jin Y. Catalytic Oxidation of Li2S on the Surface of Metal Sulfides for Li-S Batteries[J]. Proc Natl Acad Sci, 2017,114(5):840-845.
Niu X Q, Wang X L, Wang D H. Metal Hydroxide a New Stabilizer for the Construction of Sulfur/Carbon Composites as High-Performance Cathode Materials for Lithium-Sulfur Batteries[J]. J Mater Chem A, 2015,3(33):17106-17112. doi: 10.1039/C5TA03062E
Jiang J, Zhu J H, Ai W. Encapsulation of Sulfur with Thin-Layered Nickel-Based Hydroxides for Long-Cyclic Lithium-Sulfur Cells[J]. Nat Commun, 2015,6(9)8622.
Zhang J T, Hu H, Li Z. Double-Shelled Nanocages with Cobalt Hydroxide Inner Shell and Layered Double Hydroxides Outer Shell as High-Efficiency Polysulfide Mediator for Lithium-Sulfur Batteries[J]. Angew Chem Int Ed, 2016,55(12):3982-3986. doi: 10.1002/anie.201511632
Dai C, Hu L, Wang M Q. Uniform α-Ni(OH)2 Hollow Spheres Constructed from Ultrathin Nanosheets as Efficient Polysulfide Mediator for Long-Term Lithium-Sulfur Batteries[J]. Energy Storage Mater, 2017,8:202-208. doi: 10.1016/j.ensm.2017.04.003
Brik M G, Ma C G. First-Principles Studies of the Electronic and Elastic Properties of Metal Nitrides XN(X=Sc, Ti, V, Cr, Zr, Nb)[J]. Comput Mater Sci, 2012,51(1):380-388. doi: 10.1016/j.commatsci.2011.08.008
Milosev I, Strehblow H H, Navinsek B. Electrochemical and Thermal-Oxidation of Tin Coatings Studied by XPS[J]. Surf Interface Anal, 1995,23(7/8):529-539.
Cui Z M, Zu C X, Zhou W D. Mesoporous Titanium Nitride-Enabled Highly Stable Lithium-Sulfur Batteries[J]. Adv Mater, 2016,28(32):6926-6931. doi: 10.1002/adma.201601382
Sun Z H, Zhang J Q, Yin L C. Conductive Porous Vanadium Nitride/Graphene Composite as Chemical Anchor of Polysulfides for Lithium-Sulfur Batteries[J]. Nat Commun, 2017,814627. doi: 10.1038/ncomms14627
Deng D R, Xue F, Jia Y J. Co4N Nanosheet Assembled Mesoporous Sphere as a Matrix for Ultrahigh Sulfur Content Lithium-Sulfur Batteries[J]. ACS Nano, 2017,11(6):6031-6039. doi: 10.1021/acsnano.7b01945
Bao W, Liu L, Wang C. Facile Synthesis of Crumpled Nitrogen-Doped MXene Nanosheets as a New Sulfur Host for Lithium-Sulfur Batteries[J]. Adv Energy Mater, 2018,8(13)1702485. doi: 10.1002/aenm.201702485
Liang X, Rangom Y, Kwok C Y. Interwoven MXene Nanosheet/Carbon-Nanotube Composites as Li-S Cathode Hosts[J]. Adv Mater, 2017,29(3)1603040. doi: 10.1002/adma.201603040
Bao W Z, Su D W, Zhang W X. 3D Metal Carbide@Mesoporous Carbon Hybrid Architecture as a New Polysulfide Reservoir for Lithium-Sulfur Batteries[J]. Adv Funct Mater, 2016,26(47):8746-8756. doi: 10.1002/adfm.201603704
Zhou F, Li Z, Luo X. Low Cost Metal Carbide Nanocrystals as Binding and Electrocatalytic Sites for High Performance Li-S Batteries[J]. Nano Lett, 2018,18(2):1035-1043. doi: 10.1021/acs.nanolett.7b04505
Choi J, Jeong T G, Cho B W. Tungsten Carbide as a Highly Efficient Catalyst for Polysulfide Fragmentations in Li-S Batteries[J]. J Phys Chem C, 2018,122(14):7664-7669. doi: 10.1021/acs.jpcc.8b02096
Su D, Cortie M, Wang G. Fabrication of N-doped Graphene-Carbon Nanotube Hybrids from Prussian Blue for Lithium-Sulfur Batteries[J]. Adv Energy Mater, 2017,7(8)1602014. doi: 10.1002/aenm.201602014
Jiang H, Liu X C, Wu Y. Metal-Organic Frameworks for High Charge-Discharge Rates in Lithium-Sulfur Batteries[J]. Angew Chem Int Ed, 2018,57(15):3916-3921. doi: 10.1002/anie.201712872
Hong X J, Tan T X, Guo Y K. Confinement of Polysulfides within Bi-Functional Metal-Organic Frameworks for High Performance Lithium-Sulfur Batteries[J]. Nanoscale, 2018,10(6):2774-2780. doi: 10.1039/C7NR07118C
Park H, Siegel D J. Tuning the Adsorption of Polysulfides in Lithium Sulfur Batteries with Metal-Organic Frameworks[J]. Chem Mater, 2017,29(11):4932-4937. doi: 10.1021/acs.chemmater.7b01166
Wang Z, Wang B, Yang Y. Mixed-Metal-Organic Framework with Effective Lewis Acidic Sites for Sulfur Confinement in High-Performance Lithium-Sulfur Batteries[J]. ACS Appl Mater Interfaces, 2015,7(37):20999-21004. doi: 10.1021/acsami.5b07024
Zhou J, Li R, Fan X. Rational Design of a Metal-Organic Framework Host for Sulfur Storage in Fast, Long-Cycle Li-S Batteries[J]. Energy Environ Sci, 2014,7(8):2715-2724. doi: 10.1039/C4EE01382D
Liu Y, Li G, Fu J. Strings of Porous Carbon Polyhedrons as Self-Standing Cathode Host for High-Energy-Density Lithium-Sulfur Batteries[J]. Angew Chem Int Ed, 2017,56(22):6176-6180. doi: 10.1002/anie.201700686
Chen X, Ding X, Wang C. A Multi-Shelled CoP Nanosphere Modified Separator for Highly Efficient Li-S Batteries[J]. Nanoscale, 2018,10(28):13694-13701. doi: 10.1039/C8NR03854F
Fan C Y, Zheng Y P, Zhang X H. High-Performance and Low-Temperature Lithium-Sulfur Batteries:Synergism of Thermodynamic and Kinetic Regulation[J]. Adv Energy Mater, 2018,8(18)1703638. doi: 10.1002/aenm.201703638
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
Zunyuan Xie , Lijin Yang , Zixiao Wan , Xiaoyu Liu , Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137
Simin Fang , Wei Huang , Guanghua Yu , Cong Wei , Mingli Gao , Guangshui Li , Hongjun Tian , Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
Juan Yuan , Bin Zhang , Jinping Wu , Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170