Citation: MA Hao, ZHAO Xue, LI Kunlan, SHAO Guolin, AN Qingda, YANG Liyu, WEI Ligang. Evaluation of Silane Imidazolium Bis(trifluoromethane)sulfonimide Ionic Liquid Stationary Phase for Gas Chromatography[J]. Chinese Journal of Applied Chemistry, ;2020, 37(4): 447-454. doi: 10.11944/j.issn.1000-0518.2020.04.190231 shu

Evaluation of Silane Imidazolium Bis(trifluoromethane)sulfonimide Ionic Liquid Stationary Phase for Gas Chromatography

  • Corresponding author: AN Qingda, anqingda@dlpu.edu.cn WEI Ligang, wei_ligang@hotmail.com
  • Received Date: 2 September 2019
    Revised Date: 17 January 2020
    Accepted Date: 27 February 2020

    Fund Project: the National Natural Science Foundation of China 21776026Supported by the National Natural Science Foundation of China(No.21776026)

Figures(4)

  • Silane imidazolium ionic liquids (ILs) with different alkyl substituted groups (C1, C2 and C4) on the cations and bis(trifluoromethane)sulfonimide ions ([NTf2]-) as the anions were synthesized as the stationary phase for packed column gas chromatography. The silane-based imidazolium ILs are strong polar stationary phases. The cation structure influences the thermal stability, polarity and separation properties. The separation behavior of 1-butyl-3-[(3-trimethoxysilyl)-propyl]imidazolium bis(trifluoromethane)sulfonimide ([PBIM] NTf2) is better than that of other IL stationary phases. The [PBIM] NTf2 stationary phase was further evaluated using solvation parameter model. The interaction mechanism between stationary phase and components as well as separation properties of [PBIM] NTf2 column for different chemical compounds were investigated. The results indicate that hydrogen-bond basicity and dipole-dipole interactions as the main intermolecular forces exist between [PBIM] NTf2 and components. The stationary phase shows a good selectivity for the components such as Grob test mixture, alkanes, alcohols, esters and amines.
  • 加载中
    1. [1]

      Freemantle M. Designer Solvents:Ionic Liquids may Boost Clean Technology Development[J]. Chem Eng News, 1998,76(13):32-37. doi: 10.1021/cen-v076n013.p032

    2. [2]

      Pacholec F, Butler H T, Poole C F. Molten Organic Salt Phase for Gas-Liquid Chromatography[J]. Anal Chem, 1982,54(12):1938-1941. doi: 10.1021/ac00249a006

    3. [3]

      Ragonese C, Sciarrone D, Tranchida P Q. Use of Ionic Liquids as Stationary Phases in Hyphenated Gas Chromatography Techniques[J]. J Chromatogr A, 2012,1255(14)130144.  

    4. [4]

      LU Kai, LIU Wei, QI Meiling. Evaluation of Two Hydroxyl-Terminated Monocationic Ionic Liquid Stationary Phases with High Thermal Stability for Capillary Gas Chromatography[J]. Chinese J Chromatogr, 2010,28(8):731-736.  

    5. [5]

      Talebi M, Patil R A, Armstrong D W. Variation of Anionic Moieties of Dicationic Ionic Liquid GC Stationary Phases:Effect On Stability and Selectivity[J]. Anal Chim Acta, 2018,1042(26):155-164.

    6. [6]

      CHEN Xiaoyan, LU Kai, QI Meiling. Evaluation of Chromatographic Performance of Polymerized Ionic Liquid Stationary Phase for Capillary Gas Chromatography[J]. Chinese J Chromatogr, 2009,27(6):750-754. doi: 10.3321/j.issn:1000-8713.2009.06.003

    7. [7]

      Sun X J, Zhu Y L, Xing J. High Temperature and Highly Selective Stationary Phases of Ionic Liquid Bonded Polysiloxanes for Gas Chromatography[J]. J Chromatogr A, 2011,1218(6):833-841. doi: 10.1016/j.chroma.2010.12.036

    8. [8]

      Zhao X J, Tan K F, Xing J. A Flexible and Convenient Strategy for Synthesis of Ionic Liquid Bonded Polysiloxane Stationary Phases[J]. J Chromatogr A, 2019,1587:197-208. doi: 10.1016/j.chroma.2018.12.021

    9. [9]

      Dai J L, Zhao L H, Shi J H. Preparation and Evaluation of a Novel Bonded Imidazolium Ionic Liquid as Stationary Phase for Gas Chromatography[J]. J Sep Sci, 2017,40(13):2769-2778. doi: 10.1002/jssc.201700130

    10. [10]

      Parajó J J, Teijeira T, Fernández J. Thermal Stability of Some Imidazolium[NTf2] Ionic Liquids:Isothermal and Dynamic Kinetic Study Through Thermogravimetric Procedures[J]. J Chem Thermodyn, 2017,112:105-113. doi: 10.1016/j.jct.2017.04.016

    11. [11]

      Patil R A, Talebi M, Armstrong D W. Synthesis of Thermally Stable GeminalDicationic Ionic Liquids and Related Ionic Compounds:An Examination of Physicochemical Properties by Structural Modification[J]. Chem Mater, 2016,28(12):4315-4323. doi: 10.1021/acs.chemmater.6b01247

    12. [12]

      WANG Zhonglai, WANG Yunfeng, SHI Enlin. Effects of Substituted Functional Groups of Cations on Retention Performance of Ionic Liquid Stationary Phases in Gas Chromatography[J]. Chinese J Chromatogr, 2018,36(6):557-565.  

    13. [13]

      Heydar K T, Azadeh A M, Yaghoubnejad S. Characterization of a Dicationic Imidazolium-Based Ionic Liquid as a Gas Chromatography Stationary Phase[J]. J Chromatogr A, 2017,1511:92-100. doi: 10.1016/j.chroma.2017.05.037

    14. [14]

      Rodríguez-Sánchez S, Galindo-Iranzo P, Soria A C. Characterization by the Solvation Parameter Model of the Retention Properties of Commercial Ionic Liquid Columns for Gas Chromatography[J]. J Chromatogr A, 2014,1326:96-102. doi: 10.1016/j.chroma.2013.12.020

    15. [15]

      Abraham M H. Scales of Solute Hydrogen-Bonding:Their Construction and Application to Physicochemical and Biochemical Processes[J]. Chem Soe Rev, 1993,22:73-83. doi: 10.1039/cs9932200073

    16. [16]

      Baltazar Q Q, Leininger S K, Anderson J L. Binary Ionic Liquid Mixtures as Gas Chromatography Stationary Phases for Improving the Separation Selectivity of Alcohols and Aromatic Compounds[J]. J Chromatogr A, 2008,1182(1):119-127. doi: 10.1016/j.chroma.2007.12.075

  • 加载中
    1. [1]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    2. [2]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    3. [3]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    4. [4]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    5. [5]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    6. [6]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    7. [7]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    8. [8]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    9. [9]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    10. [10]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    11. [11]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    12. [12]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    13. [13]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    14. [14]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    15. [15]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    16. [16]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    17. [17]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    18. [18]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    19. [19]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    20. [20]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

Metrics
  • PDF Downloads(1)
  • Abstract views(640)
  • HTML views(118)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return