Citation: FU Fengyan, CHENG Jingquan. Progress in Applications of Electrospun Nanofibers as Proton Exchange Membrane in Fuel Cells[J]. Chinese Journal of Applied Chemistry, ;2020, 37(4): 405-415. doi: 10.11944/j.issn.1000-0518.2020.04.190230 shu

Progress in Applications of Electrospun Nanofibers as Proton Exchange Membrane in Fuel Cells

  • Corresponding author: FU Fengyan, 1374195561@qq.com
  • Received Date: 30 August 2019
    Revised Date: 3 December 2019
    Accepted Date: 10 December 2019

    Fund Project: the Colleges and Universities in Hebei Province Science Research Fund BJ2019206Supported by the Colleges and Universities in Hebei Province Science Research Fund(No.BJ2019206), and Hengshui University High-level Talents Research Start-up Fund

Figures(8)

  • Environment protection and environment-friendly energy development are very important for human and society. Proton exchange membrane fuel cell (PEMFCs) have attracted much interest due to their high energy conversion rate and pollution-free in recent years. The electrospun nanofibers show the specific properties, such as a high specific surface area, high porosity and fully interconnected three-dimensional network structure, and are one of feasible candidates for PEMFCs applications. The composite proton exchange membrane containing aligned nanofibers has the ability to achieve high proton conductivity, low fuel permeability in fuel cell and good chemical, thermal, and mechanical stabilities. In this paper, PEMFCs are introduced firstly, then, starting from the composite proton exchange membranes of different ionic polymer matrix, the application and mechanism of electrospun nanofibers in different kinds of ionic polymers such as Nafion, sulfonated polyimide (SPI), polybenzimidazole (PBI) and sulfonated polyether ether ketone (SPEEK) are introduced in details, and the main problems and the development trend are also discussed.
  • 加载中
    1. [1]

      Sopian K, Wan Daud W R. Challenges and Future Developments in Proton Exchange Membrane Fuel Cells[J]. Renew Energy, 2006,31(5):719-727. doi: 10.1016/j.renene.2005.09.003

    2. [2]

      Daud W R W, Rosli R E, Majlan E H. PEM Fuel Cell System Control:A Review[J]. Renew Energy, 2017,113:620-638. doi: 10.1016/j.renene.2017.06.027

    3. [3]

      Sharaf O Z, Orhan M F. An Overview of Fuel Cell Technology:Fundamentals and Applications[J]. Renew Sust Energy Rev, 2014,32:810-853. doi: 10.1016/j.rser.2014.01.012

    4. [4]

      Chen H, Song Z, Zhao X. A Review of Durability Test Protocols of the Proton Exchange Membrane Fuel Cells for Vehicle[J]. Appl Energy, 2018,224:289-299. doi: 10.1016/j.apenergy.2018.04.050

    5. [5]

      Zhang T, Wang P, Chen H. A Review of Automotive Proton Exchange Membrane Fuel Cell Degradation under Start-Stop Operating Condition[J]. Appl Energy, 2018,223:249-262. doi: 10.1016/j.apenergy.2018.04.049

    6. [6]

      Yadav R, Subhash A, Chemmencheryr N. Graphene and Graphene Oxide for Fuel Cell Technology[J]. Ind Eng Chem Res, 2018,57(29):9333-9350. doi: 10.1021/acs.iecr.8b02326

    7. [7]

      Bakangura E, Wu L, Ge L. Mixed Matrix Proton Exchange Membranes for Fuel Cells:State of the Art and Perspectives[J]. Prog Polym Sci, 2016,57:103-152. doi: 10.1016/j.progpolymsci.2015.11.004

    8. [8]

      Kallem P, Eguizabal A, Mallada R. Constructing Straight Polyionic Liquid Microchannels for Fast Anhydrous Proton Transport[J]. ACS Appl Mater Interfaces, 2016,8(51):35377-35389. doi: 10.1021/acsami.6b13315

    9. [9]

      Banergee S, Curtin D E. Nafion Perfluorinated Membranes in Fuel Cells[J]. J Fluorine Chem, 2004,125(8):1211-1216. doi: 10.1016/j.jfluchem.2004.05.018

    10. [10]

      Li Q F, He R, Jensen J O. Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100℃[J]. Chem Mater, 2003,15(11):4896-4915.

    11. [11]

      Ito H, Maeda T, Nakano A. Properties of Nafion Membranes under PEM Water Electrolysis Conditions[J]. Int J Hydrogen Energy, 2011,36(17):10527-10540.  

    12. [12]

      Wang L S, Lai A N, Lin C X. Orderly Sandwich-shaped Graphene Oxide/Nafion Composite Membranes for Direct Methanol Fuel Cells[J]. J Membr Sci, 2015,492:58-66. doi: 10.1016/j.memsci.2015.05.049

    13. [13]

      Yan X H, Wu R, Xu J B. Monolayer Graphene-Nafion Sandwich Membrane for Direct Methanol Fuel Cells[J]. J Power Sources, 2016,311:188-194. doi: 10.1016/j.jpowsour.2016.02.030

    14. [14]

      Pan H Y, Chen S X, Zhang Y Y. Preparation and Properties of the Cross-linked Sulfonated Polyimide Containing Benzimidazole as Electrolyte Membranes in Fuel Cells[J]. J Membr Sci, 2015,476:87-94. doi: 10.1016/j.memsci.2014.11.023

    15. [15]

      Ngamsantivongsa P, Lin H L, Yu T L. Crosslinked Ethyl Phosphoric acid Grafted Polybenzimidazole and Polybenzimidazole Blend Membranes for High-Temperature Proton Exchange Membrane Fuel Cells[J]. J Polym Res, 2016,23(2):1-11.  

    16. [16]

      Kallem P, Drobek M, Julbe A. Hierarchical Porous Polybenzimidazole Microsieves:An Efficient Architecture for Anhydrous Proton Transport via Polyionic Liquids[J]. ACS Appl Mater Interfaces, 2017,9(17):14844-14857. doi: 10.1021/acsami.7b01916

    17. [17]

      Chen P, Wu H J, Yuan T. Electronspun Nanofiber Network Anode for a Passive Direct Methanol Fuel Cell[J]. J Power Sources, 2014,255:70-75. doi: 10.1016/j.jpowsour.2013.12.130

    18. [18]

      Xu F, Mu S, Pan M. Mineral Nanofibre Reinforced Composite Polymer Electrolyte Membranes with Enhanced Water Retention Capability in PEM Fuel Cells[J]. J Membr Sci, 2011,377(1/2):134-140.  

    19. [19]

      Choi S W, Fu Y Z, Ahn Y R. Nafion-Impregnated Electrospun Polyvinylidene Fluoride Composite Membranes for Direct Methanol Fuel Cells[J]. J Power Sources, 2008,180(1):167-171. doi: 10.1016/j.jpowsour.2008.02.042

    20. [20]

      Li H Y, Liu Y L. Nafion-functionalized Electrospun Poly(vinylidene fluoride)(PVDF) Nanofibers for High Performance Proton Exchange Membranes in Fuel Cells[J]. J Mater Chem A, 2014,2:3783-3793. doi: 10.1039/C3TA14264G

    21. [21]

      Li H Y, Lee Y Y, Lai J Y. Composite Membranes of Nafion and Poly(styrene sulfonic acid)-Grafted Poly(vinylidene fluoride) Electrospun Nanofiber Mats for Fuel Cells[J]. J Membr Sci, 2014,466:238-245. doi: 10.1016/j.memsci.2014.04.057

    22. [22]

      Sood R, Cavaliere S, Jones D J. Electrospun Nanofibre Composite Polymer Electrolyte Fuel Cell and Electrolysis Membranes[J]. Nano Energy, 2016,26:729-745. doi: 10.1016/j.nanoen.2016.06.027

    23. [23]

      Kakade M V, Givens S, Gardner K. Electric Field Induced Orientation of Polymer Chains in Macroscopically Aligned Electrospun Polymer Nanofibers[J]. J Am Chem Soc, 2007,129(10):2777-2782. doi: 10.1021/ja065043f

    24. [24]

      Gong X, He G, Wu Y. Aligned Electrospun Nanofibers as Proton Conductive Channels Through Thickness of Sulfonated Poly(phthalazinone ether sulfone ketone) Proton Exchange Membranes[J]. J Power Sources, 2017,358:134-141. doi: 10.1016/j.jpowsour.2017.05.022

    25. [25]

      Matsushita S, Kim J D. Organic Solvent-free Preparation of Electrolyte Membranes with High Proton Conductivity Using Aromatic Hydrocarbon Polymers and Small Cross-linker Molecules[J]. Solid State Ionics, 2018,316:102-109. doi: 10.1016/j.ssi.2017.12.033

    26. [26]

      Miyake J, Miyatake K. Fluorine-free Sulfonated Aromatic Polymers as Proton Exchange Membranes[J]. Polym J, 2017,49487. doi: 10.1038/pj.2017.11

    27. [27]

      Tamura T, Kawakami H. Aligned Electrospun Nanofiber Composite Membranes for Fuel Cell Electrolytes[J]. Nano Lett, 2010,10(4):1324-1328. doi: 10.1021/nl1007079

    28. [28]

      Tamura T, Takemori R, Kawakami H. Proton Conductive Properties of Composite Membranes Containing Uniaxially Aligned Ultrafine Electrospun Polyimide Nanofiber[J]. J Power Sources, 2012,217:135-141. doi: 10.1016/j.jpowsour.2012.05.118

    29. [29]

      Karube Y, Kawakami H. Fabrication of Well-Aligned Electrospun Nanofibrous Membrane Based on Fluorinated Polyimide[J]. Polym Adv Technol, 2010,21(12):861-866. doi: 10.1002/pat.1511

    30. [30]

      Fukushima S, Karube Y, Kawakami H. Preparation of Ultrafine Uniform Electrospun Polyimide Nanofiber[J]. Polym J, 2010,42514. doi: 10.1038/pj.2010.33

    31. [31]

      Takemori R, Ito G, Tanaka M. Ultra-High Proton Conduction in Electrospun Sulfonated Polyimide Nanofibers[J]. RSC Adv, 2014,4(38):20005-20009. doi: 10.1039/C4RA02155J

    32. [32]

      Quartarone E, Angioni S, Mustarelli P. Polymer and Composite Membranes for Proton-Conducting, High-Temperature Fuel Cells:A Critical Review[J]. Materials, 2017,10(7)687. doi: 10.3390/ma10070687

    33. [33]

      Bose S, Kuila T, Nguyen T X H. Polymer Membranes for High Temperature Proton Exchange Membrane Fuel Cell:Recent Advances and Challenges[J]. Prog Polym Sci, 2011,36(6):813-843. doi: 10.1016/j.progpolymsci.2011.01.003

    34. [34]

      He G, Li Z, Zhao J. Nanostructured Ion-Exchange Membranes for Fuel Cells:Recent Advances and Perspectives[J]. Adv Mater, 2015,27(36):5280-5295. doi: 10.1002/adma.201501406

    35. [35]

      Eguiz bal A, Sgroi M, Pullini D. Nanoporous PBI Membranes by Track Etching for High Temperature PEMs[J]. J MembrSci, 2014,454:243-252.  

    36. [36]

      Araya S S, Zhou F, Liso V. A Comprehensive Review of PBI-Based High Temperature PEM Fuel Cells[J]. Int J Hydrogen Energy, 2016,41(46):21310-21344. doi: 10.1016/j.ijhydene.2016.09.024

    37. [37]

      Zuo Z, Fu Y, Manthiram A. Novel Blend Membranes Based on Acid-Base Interactions for Fuel Cells[J]. Polymers, 2012,4(4):1627-1644.  

    38. [38]

      Asensio J A, Sanchez E M, Gomez-Romero P. Proton-Conducting Membranes Based on Benzimidazole Polymers for High-Temperature PEM Fuel Cells[J]. Chem Soc Rev, 2010,39(8)3210. doi: 10.1039/b922650h

    39. [39]

      He R, Li Q, Bach A. Physicochemical Properties of Phosphoric Acid Doped Polybenzimidazole Membranes for Fuel Cells[J]. J Membr Sci, 2006,277(1/2):38-45.

    40. [40]

      Lobato J, Ca izares P, Rodrigo M A. Improved Polybenzimidazole Films for H3PO4-Doped PBI-Based High Temperature PEMFC[J]. J Membr Sci, 2007,306(1/2):47-55.  

    41. [41]

      Guan Y S, Pu H T, Jin M. Preparation and Characterisation of Proton Exchange Membranes Based on Crosslinked Polybenzimidazole and Phosphoric Acid[J]. Fuel Cells, 2010,10(6):973-982. doi: 10.1002/fuce.201000071

    42. [42]

      Kim J S, Reneker D H. Polybenzimidazole Nanofiber Produced by Electrospinning[J]. Polym Eng Sci, 2004,39(5):849-854.

    43. [43]

      Han N K, Ryu J H, Park D U. Fabrication and Electrochemical Characterization of Polyimide-Derived Carbon Nanofibers for Self-standing Supercapacitor Electrode Materials[J]. J Appl Polym Sci, 2019,136(32)47846. doi: 10.1002/app.47846

    44. [44]

      Yao J, Bastiaansen W C, Peijs T. High Strength and High Modulus Electrospun Nanofibers[J]. Fibers, 2014,2(2):158-186. doi: 10.3390/fib2020158

    45. [45]

      Li H Y, Liu Y L. Polyelectrolyte Composite Membranes of Polybenzimidazole and Crosslinked Polybenzimidazole-Polybenzoxazine Electrospun Nanofibers for Proton Exchange Membrane Fuel Cells[J]. J Mater Chem A, 2013,1(4):1171-1178. doi: 10.1039/C2TA00270A

    46. [46]

      Fu F Y, Xu H L, Dong Y. Design of Polyphosphazene-based Graft Copolystyrenes with Alkylsulfonate Branch Chains for Proton Exchange Membranes[J]. J Membr Sci, 2015,489:119-128. doi: 10.1016/j.memsci.2015.04.016

    47. [47]

      Fu F Y, Xu H L, Dong Y. Polyphosphazene-based Copolymers Containing Pendant Alkylsulfonic Acid Groups as Proton Exchange Membranes[J]. Solid State Ionics, 2015,278:58-64. doi: 10.1016/j.ssi.2015.05.018

    48. [48]

      Jahangiri S, Aravi İ, Işıkel Şanlı L. Fabrication and Optimization of Proton Conductive Polybenzimidazole Electrospun Nanofiber Membranes[J]. Polym Adv Technol, 2018,29(1):594-602. doi: 10.1002/pat.4169

    49. [49]

      Muthuraja P, Prakash S, Shanmugam V M. Stable Nanofibrous Poly(arylsulfone ether benzimidazole) Membrane with High Conductivity for High Temperature PEM Fuel Cells[J]. Solid State Ionics, 2018,317:201-209. doi: 10.1016/j.ssi.2018.01.012

    50. [50]

      Iulianelli A, Basile A. Sulfonated PEEK-Based Polymers in PEMFC and DMFC Applications:A Review[J]. Int J Hydrogen Energy, 2012,37(20):15241-15255. doi: 10.1016/j.ijhydene.2012.07.063

    51. [51]

      Wang J, He Y, Zhao L. Enhanced Proton Conductivities of Nanofibrous Composite Membranes Enabled by Acid-Base Pairs under Hydrated and Anhydrous Conditions[J]. J Membr Sci, 2015,482:1-12.  

    52. [52]

      Dong C, Hao Z, Wang Q. Facile Synthesis of Metal Oxide Nanofibers and Construction of Continuous Proton-Conducting Pathways in SPEEK Composite Membranes[J]. Int J Hydrogen Energy, 2017,42(40):25388-25400. doi: 10.1016/j.ijhydene.2017.08.136

    53. [53]

      Liu X, Yang Z, Zhang Y. Electrospun Multifunctional Sulfonated Carbon Nanofibers for Design and Fabrication of SPEEK Composite Proton Exchange Membranes for Direct Methanol Fuel Cell Application[J]. Int J Hydrogen Energy, 2017,42(15):10275-10284. doi: 10.1016/j.ijhydene.2017.02.128

    54. [54]

      Xu X, Li L, Wang H. Solution Blown Sulfonated Poly(ether ether ketone) Nanofiber-Nafion Composite Membranes for Proton Exchange Membrane Fuel Cells[J]. RSC Adv, 2015,5(7):4934-4940. doi: 10.1039/C4RA10898A

    55. [55]

      Boaretti C, Pasquini L, Sood R. Mechanically Stable Nanofibrous SPEEK/Aquivion Composite Membranes for Fuel Cell Applications[J]. J Membr Sci, 2018,545:66-74. doi: 10.1016/j.memsci.2017.09.055

    56. [56]

      Sadrjahani M, Gharehaghaji A A, Javanbakht M. Aligned Electrospun Sulfonated Polyetheretherketone Nanofiber Based Proton Exchange Membranes for Fuel Cell Applications[J]. Polym Eng Sci, 2017,57(8):789-796. doi: 10.1002/pen.24453

    57. [57]

      Gong X, He G, Wu Y. Aligned Electrospun Nanofibers as Proton Conductive Channels Through Thickness of Sulfonated Poly(phthalazinone ether sulfone ketone) Proton Exchange Membranes[J]. J Power Sources, 2017,358:134-141. doi: 10.1016/j.jpowsour.2017.05.022

    58. [58]

      Fu F Y, Xu H L, He M L. Composite Polyphosphazene Membranes Doped with Phosphotungstic Acid and Silica[J]. Chinese J Polym Sci, 2014,32(8):996-1002. doi: 10.1007/s10118-014-1459-0

    59. [59]

      Ketpang K, Lee K, Shanmugam S. Facile Synthesis of Porous Metal Oxide Nanotubes and Modified Nafion Composite Membranes for Polymer Electrolyte Fuel Cells Operated under Low Relative Humidity[J]. Appl Mater Interfaces, 2014,6(19):16734-16744. doi: 10.1021/am503789d

    60. [60]

      Ketpang K, Shanmugam S, Suwanboon S. Efficient Water Management of Composite Membranes Operated in Polymer Electrolyte Membrane Fuel Cells under Low Relative Humidity[J]. J Membr Sci, 2015,493:285-298. doi: 10.1016/j.memsci.2015.06.055

    61. [61]

      Zhen D X, Zhao B, Shin H C. Electrospun Porous Perovskite La0.6Sr0.4Co1-xFexO3-δ Nanofibers for Efficient Oxygen Evolution Reaction[J]. Adv Mater Interfaces, 2017,4(13)1700146. doi: 10.1002/admi.201700146

    62. [62]

      Lee C, Jo S M, Choi J. SiO2/Sulfonated Poly Ether Ether Ketone(SPEEK) Composite Nanofiber Mat Supported Proton Exchange Membranes for Fuel Cells[J]. J Membr Sci, 2013,48(10):3665-3671.  

    63. [63]

      Li H Y, Lee Y Y, Lai J Y. Composite Membranes of Nafion and Poly(Styrene Sulfonic Acid)-Grafted Poly(vinylidene fluoride) Electrospun Nanofiber Mats for Fuel Cells[J]. J Membr Sci, 2014,466:238-245. doi: 10.1016/j.memsci.2014.04.057

    64. [64]

      Li H Y, Liu Y L. Nafion-Functionalized Electrospun Poly(Vinylidene Fluoride)(PVDF) Nanofibers for High Performance Proton Exchange Membranes in Fuel Cells[J]. J Mater Chem A, 2014,2:3783-3793. doi: 10.1039/C3TA14264G

    65. [65]

      Dos Santos L, Rose S, Sel O. Electrospinning a Versatile Tool for Designing Hybrid Proton Conductive Membrane[J]. J Membr Sci, 2016,513:12-19. doi: 10.1016/j.memsci.2016.04.002

    66. [66]

      ZHANG Yingying, KANG Lijuan, HAN Zhaolian. Preparation of Anti-layered Polyamide-66/Polyacrylonitrile/Polyethersulfone(PA-66/PAN/PES) Sandwich Structured Membrane for Air Filtration by Electrospinning[J]. Chem J Chinese Univ, 2017,38(6):1025-1032.  

    67. [67]

      XIE Ruyi, ZHANG Linping, XU Hong. Preparation of Bi20TiO32/Polyacrylonitrile Composite Nanofibers and Their Photocatalytic Activity for Degradation of Isoproturon[J]. Chinese J Appl Chem, 2017,34(6):656-663.  

    68. [68]

      Subramanian C, Weiss R A, Shaw M T. Fabrication and Characterization of Conductive Nanofiber-Based Composite Membranes[J]. Ind Eng Chem Res, 2013,52(43):15088-15093. doi: 10.1021/ie402072e

    69. [69]

      Yu D M, Yoon S, Kim T H. Properties of Sulfonated Poly(arylene ether sulfone)/Electrospun Nonwoven Polyacrylonitrile Composite Membrane for Proton Exchange Membrane Fuel Cells[J]. J Membr Sci, 2013,446:212-219. doi: 10.1016/j.memsci.2013.06.028

    70. [70]

      Gong C, Liu H, Zhang B. High Level of Solid Superacid Coated Poly(vinylidene fluoride) Electrospun Nanofiber Composite Polymer Electrolyte Membranes[J]. J Membr Sci, 2017,535:113-121. doi: 10.1016/j.memsci.2017.04.037

    71. [71]

      Won J H, Lee H J, Lim J M. Anomalous Behavior of Proton Transport and Dimensional Stability of Sulfonated Poly(arylene ether sulfone) Nonwoven/Silicate Composite Proton Exchange Membrane with Dual Phase Co-continuous Morphology[J]. J Membr Sci, 2014,450:235-241. doi: 10.1016/j.memsci.2013.09.019

  • 加载中
    1. [1]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    4. [4]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    5. [5]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    6. [6]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    7. [7]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    8. [8]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    9. [9]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    10. [10]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    11. [11]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    12. [12]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    13. [13]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    14. [14]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    15. [15]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    16. [16]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    17. [17]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    18. [18]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    19. [19]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    20. [20]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

Metrics
  • PDF Downloads(2)
  • Abstract views(667)
  • HTML views(154)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return