Citation: HU Jiale, XUE Dongfeng. Research Progress on the Characteristics of Rare Earth Ions and Rare Earth Functional Materials[J]. Chinese Journal of Applied Chemistry, ;2020, 37(3): 245-255. doi: 10.11944/j.issn.1000-0518.2020.03.190350 shu

Research Progress on the Characteristics of Rare Earth Ions and Rare Earth Functional Materials

  • Corresponding author: XUE Dongfeng, dongfeng@ciac.ac.cn
  • Received Date: 23 December 2019
    Revised Date: 28 January 2020
    Accepted Date: 2 February 2020

    Fund Project: the National Natural Science Foundation of China 21601176Supported by the National Natural Science Foundation of China(No.51832007, No.21601176), and the External Cooperation Program of BIC, Chinese Academy of Sciences(No.121522KYS820150009)the National Natural Science Foundation of China 51832007the External Cooperation Program of BIC, Chinese Academy of Sciences 121522KYS820150009

Figures(8)

  • Rare earth elements are a series of 17 elements including scandium, yttrium and lanthanide. They not only have physical and chemical similarities in nature, but also have their own unique and diverse electronic structures. From the chemical level, the characteristics of rare earth ions determine the nature of high-tech applications, such as rare earth permanent magnet, magnetic cooling, superconductivity, pyroelectricity, optical refrigeration, nonlinear optics, catalysis, etc. Rare earth functional materials are the basis for the application of these technologies. In terms of the requirements of scientific and technological development, the research and development of rare earth functional materials is the most important way to achieve high-quality development of rare earth resources. In this paper, based on the characteristics of rare earth ions, the orbital hybrid model is used to construct the basic relationship between rare earth ions and rare earth functional materials. The research progress of rare earth ions in composition design and performance optimization of rare earth functional materials in different application fields in recent years is summarized.
  • 加载中
    1. [1]

      Ecija D, Urgel J I, Seitsonen A P. Lanthanide-Directed Assembly of Interfacial Coordination Architectures-From Complex Networks to Functional Nanosystems[J]. Acc Chem Res, 2018,51(2):365-375.  

    2. [2]

      HU Xiaoshuang, WANG Yanmei, WANG Yan. Syntheses, Structures and Near Infrared Luminescence of a Series of Ln(Ⅲ) Coordination Polymers[J]. Chinese J Appl Chem, 2017,34(4):486-488.  

    3. [3]

      Xue D, Sun C T. 4f Chemistry Towards Rare Earth Materials Science and Engineering[J]. Sci China-Technol Sci, 2017,60(11):1767-1768.  

    4. [4]

      Sun C T, Li K, Xue D. Searching for Novel Materials via 4f Chemistry[J]. J Rare Earths, 2019,37(1):1-10.  

    5. [5]

      XU Lanlan, SUN Congting, XUE Dongfeng. Recent Advances in Rare Earth Crystals[J]. J Rare Earths, 2018,36(1):1-17.  

    6. [6]

      Duignan T J, Autschbach J. Impact of the Kohn-Sham Delocalization Error on the 4f Shell Localization and Population in Lanthanide Complexes[J]. J Chem Theory Comput, 2016,12(7):3109-3121.  

    7. [7]

      Xue D F, Sun C T, Chen X Y. Hybridized Valence Electrons of 4f0-145d0-16s2:The Chemical Bonding Nature of Rare Earth Elements[J]. J Rare Earths, 2017,35(8):837-843.  

    8. [8]

      Liang X, Xue D. Electronegativity Principles in Metal Oxides Based Supercapacitors[J]. Nanotechnology, 2020,31(7)074001.  

    9. [9]

      Li K, Xue D. Estimation of Electronegativity Values of Elements in Different Valence States[J]. J Phys Chem A, 2006,110(39):11332-11337.  

    10. [10]

      Li K, Ding Z, Xue D. Electronegativity-Related Bulk Moduli of Crystal Materials[J]. Phys Status Solid B, 2011,248(5):1227-1236.  

    11. [11]

      WANG Zheng, YIN Shaoyun, PAN Mei. Assembly and Luminescence of Mononuclear Ln to Heteronuclear Ln-M Supramolecular Complexes[J]. Chinese J Appl Chem, 2017,34(9):1017-1023.  

    12. [12]

      Lyu L, Cheong H, Ai X. Near-Infrared Light-Mediated Rare-Earth Nanocrystals:Recent Advances in Improving Photon Conversion and Alleviating the Thermal Effect[J]. NPG Asia Mater, 2018,10(8):685-702.  

    13. [13]

      Chen X, Jin L, Kong W. Confining Energy Migration in Upconversion Nanoparticles Towards Deep Ultraviolet Lasing[J]. Nat Commun, 2016,710304.  

    14. [14]

      Liu Y J, Lu Y Q, Yang X S. Amplified Stimulated Emission in Upconversion Nanoparticles for Super-Resolution Nanoscopy[J]. Nature, 2017,543(7644):229-233.  

    15. [15]

      DENG Yuefeng, SONG Yanhua, CHEN Ji. Influence of Impurity in Lu2O3 on Spectral Properties of Lu2SiO5:Ce Polycrystalline Powders[J]. Chinese J Appl Chem, 2018,35(4):457-461.  

    16. [16]

      HAO Bin, ZHAO Wenwu, YU Jianyuan. Preparation and Luminescence Property of Ba5-3x/2B4O11:xEu3+ Phosphor[J]. Chinese J Appl Chem, 2019,36(5):67-72.  

    17. [17]

      Kim Y H, Arunkumar P, Kim B Y. A Zero-Thermal-Quenching Phosphor[J]. Nat Mater, 2017,16(5):543-550.  

    18. [18]

      LI Fei, XIA Zhiguo. Rare Earth Doped Phosphors and Inorganic Quantum Dots for Solid State Lighting:Opportunity and Challenge[J]. Chinese J Appl Chem, 2018,35(8):859-870.  

    19. [19]

      Qin X, Liu X, Huang W. Lanthanide-Activated Phosphors Based on 4f-5d Optical Transitions:Theoretical and Experimental Aspects[J]. Chem Rev, 2017,117(5):4488-4527.  

    20. [20]

      Dorenbos P. Electronic Structure Engineering of Lanthanide Activated Materials[J]. J Mater Chem, 2012,22(42)22344.  

    21. [21]

      Rau J G, Gingras M J P. Frustrated Quantum Rare-Earth Pyrochlores[J]. Annu Rev Condens Matter Phys, 2019,10(1):357-386.  

    22. [22]

      Gatteschi D. Anisotropic Dysprosium[J]. Nat Chem, 2011,3(10)830.  

    23. [23]

      Starobor A, Palashov O, Babkina A. Magneto-optical Properties of Cerium-Doped Phosphate Glass[J]. J Non-Cryst Solids, 2019,524119644.  

    24. [24]

      Woo S, Song K M, Zhang X. Current-driven Dynamics and Inhibition of the Skyrmion Hall Effect of Ferrimagnetic Skyrmions in GdFeCo Films[J]. Nat Commun, 2018,9959.  

    25. [25]

      White R L. Review of Recent Work on the Magnetic and Spectroscopic Properties of the Rare-Earth Orthoferrites[J]. J Appl Phys, 1969,40(3):1061-1069.  

    26. [26]

      Boudad L, Taibi M, Belayachi W. Investigation of Structural and Magnetic Properties of GdFe0.5Cr0.5O3 Perovskite Prepared by Solid-State Route[J]. J Supercond Nov Magn, 2019. doi: 10.1007/s10948-019-05355-7

    27. [27]

      Tokunaga Y, Furukawa N, Sakai H. Composite Domain Walls in a Multiferroic Perovskite Ferrite[J]. Nat Mater, 2009,8(7):558-562.  

    28. [28]

      Saha R, Sundaresan A, Rao C N R. Novel Features of Multiferroic and Magnetoelectric Ferrites and Chromites Exhibiting Magnetically Driven Ferroelectricity[J]. Mater Horiz, 2014,1(1):20-31.  

    29. [29]

      CHEN Kunfeng, LI Gong, LIANG Xitong. Rare Earth Element Ion Modified Electrochemical Energy Storage Electrode Materials-A Short Review[J]. J Chinese Ceram Soc, 2016,44(8):1241-1247.  

    30. [30]

      Yue Z, Zhao W, Cortie D. Modulation of Crystal and Electronic Structures in Topological Insulators by Rare-Earth Doping[J]. ACS Appl Electron Mater, 2019,1(9):1929-1936.  

    31. [31]

      Li F, Lin D, Chen Z. Ultrahigh Piezoelectricity in Ferroelectric Ceramics by Design[J]. Nat Mater, 2018,17(4):349-354.  

    32. [32]

      Birol T. Stable and Switchable Electric Polarization in Two Dimensions[J]. Nature, 2018,560:174-175.  

    33. [33]

      Mukherjee R, Chanda S, Bharti C. Micro-structure, Optical Properties and AC Conductivity of Rare Earth Double Perovskite Oxides:Sr2ErNbO6[J]. Physica B:Condensed Matter, 2013,422:78-82.  

    34. [34]

      Bharti C, Sinha T P. Dielectric Properties of Rare Earth Double Perovskite Oxide Sr2CeSbO6[J]. Solid State Sci, 2010,12(4):498-502.  

    35. [35]

      Boskovic C. Rare Earth Polyoxometalates[J]. Acc Chem Res, 2017,50(9):2205-2214.  

    36. [36]

      LUO Caiwu, ZHAO Yong, JIANG Fuliang. Synthesis of Pyridine and 3-Picoline from Acrolein Diethyl Acetal and Ammonia over La- and KF-modified Y Type Zeolite Catalysts[J]. Chinese J Appl Chem, 2018,35(5):559-563.  

    37. [37]

      Akbay T, Staykov A, Druce J. The Interaction of Molecular Oxygen on LaO Terminated Surfaces of La2NiO4[J]. J Mater Chem A, 2016,4(34):13113-13124.  

    38. [38]

      LU Lingwei, SUN Xiaoqin, WANG Yawei. Research Progress in Titanium Based Perovskite as Photocatalytic Materials[J]. Chinese J Appl Chem, 2017,34(11):1221-1239.  

    39. [39]

      Catalano S, Gibert M, Fowlie J. Rare-Earth Nickelates RNiO3:Thin Films and Heterostructures[J]. Rep Prog Phys, 2018,81(4)046501.  

    40. [40]

      Kim H S, Bae H B, Jung W. Manipulation of Nanoscale Intergranular Phases for High Proton Conduction and Decomposition Tolerance in BaCeO3 Polycrystals[J]. Nano Lett, 2018,18(2):1110-1117.  

    41. [41]

      Zhou Y, Guan X F, Zhou H. Strongly Correlated Perovskite Fuel Cells[J]. Nature, 2016,534(7606):231-234.  

    42. [42]

      SU Zhe, QIN Wenjing, BAI Lei. Research Progress on Bioimaging with the Second Near-infrared Fluorescence Probes[J]. Chinese J Appl Chem, 2019,36(2):123-136.  

    43. [43]

      Hehlen M P, Meng J, Albrecht A R. First Demonstration of an All-Solid-State Optical Cryocooler[J]. Light Sci Appl, 2018,715.  

    44. [44]

      Gottschall T, Gracia-Condal A, Fries M. A Multicaloric Cooling Cycle that Exploits Thermal Hysteresis[J]. Nat Mater, 2018,17(10):929-934.  

    45. [45]

      ZHENG Xiuying, KONG Xiangjian, LONG Lasheng. Synthesis, Structure, Magnetic Properties of Lanthanide Cluster-Based Metal-Organic Frameworks[J]. Chinese J Appl Chem, 2017,34(9):1086-1092.  

    46. [46]

      Feng Y Y, Lou L, Li M. Large-Size Anisotropic Bulk SmCo/Fe(Co) Nanocomposite Magnets Prepared by Hot Rolling at Extreme Conditions[J]. J Alloy Compd, 2018,744:104-109.  

    47. [47]

      Wang F, Shen W, Fan J. Strong Texture in Nanograin Bulk Nd-Fe-B Magnets via Slow Plastic Deformation at Low Temperatures[J]. Nanoscale, 2019,11(13):6062-6071.  

    48. [48]

      Li H, Li X, Guo D. Three-Dimensional Self-Assembly of Core/Shell-Like Nanostructures for High-Performance Nanocomposite Permanent Magnets[J]. Nano Lett, 2016,16(9):5631-5638.  

    49. [49]

      Kirkeminde A, Ren S. Interdiffusion Induced Exchange Coupling of L10-FePd/α-Fe Magnetic Nanocomposites[J]. Nano Lett, 2014,14(8):4493-4498.

    50. [50]

      Pathak A K, Khan M, Gschneidner Jr K A. Cerium:An Unlikely Replacement of Dysprosium in High Performance Nd-Fe-B Permanent Magnets[J]. Adv Mater, 2015,27(16):2663-2667.  

    51. [51]

      Yoshioka T, Tsuchiura H. Site-Specific Magnetic Anisotropies in R2Fe14B Systems[J]. Appl Phys Lett, 2018,112(16)162405.  

    52. [52]

      Drozdov A P, Kong P P, Minkov V S. Superconductivity at 250 K in Lanthanum Hydride under High Pressures[J]. Nature, 2019,569(7757):528-531.  

    53. [53]

      Zhang J, Hess P W, Kyprianidis A. Observation of a Discrete Time Crystal[J]. Nature, 2017,543(7644):217-220.  

    54. [54]

      Szary P, Kaiser D, Bick J P. Magnetic Field-Dependent Spin Structures of Nanocrystalline Holmium[J]. J Appl Crystallogr, 2016,49(Pt 2):533-538.  

    55. [55]

      NIU Xiaodong, SUN Wei, QIU Xin. Advances and Future Developments in Preparation of Mg-RE Alloys by Molten Salt Electrochemical Process[J]. Chinese J Appl Chem, 2018,35(4):381-393.  

    56. [56]

      Balestrieri M, Colis S, Gallart M. Photoluminescence Properties of Rare Earth (Nd, Yb, Sm, Pr)-doped CeO2 Pellets Prepared by Solid-State Reaction[J]. J Mater Chem C, 2015,3(27):7014-7021.  

    57. [57]

      Penilla E H, Devia-Cruz L F, Duarte M A. Gain in Polycrystalline Nd-doped Alumina:Leveraging Length Scales to Create a New Class of High-Energy, Short Pulse, Tunable Laser Materials[J]. Light Sci Appl, 2018,7(1)33.  

    58. [58]

      Arpino K E, Trump B A, Scheie A O. Impact of Stoichiometry of Yb2Ti2O7 on Its Physical Properties[J]. Phys Rev B, 2017,95(9)094407.  

    59. [59]

      Chen X Y, Xu J, Xu Y S. Rare Earth Double Perovskites:A Fertile Soil in the Field of PerovskiteOxides[J]. Inorg Chem Front, 2019,6(9):2226-2238.  

    60. [60]

      Stefanski M, Grzeszkiewicz K, Ptak M. Structural and Optical Characterization of RbLaP4O12:Ln3+(Ln3+=Ce3+, Nd3+, Tm3+, or Yb3+)[J]. J Chem Phys, 2019,150(9)094706.

    61. [61]

      Kochetova N, Animitsa I, Medvedev D. Recent Activity in the Development of Proton-Conducting Oxides for High-Temperature Applications[J]. RSC Adv, 2016,6(77):73222-73268.  

    62. [62]

      Cramer A J, Cole J M, FitzGerald V. Effects of Rare-Earth Co-doping on the Local Structure of Rare-Earth Phosphate Glasses Using High and Low Energy X-ray Diffraction[J]. Phys Chem Chem Phys, 2013,15(22):8529-8543.  

  • 加载中
    1. [1]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    2. [2]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    3. [3]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    4. [4]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    5. [5]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    6. [6]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    7. [7]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    8. [8]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    11. [11]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    12. [12]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    13. [13]

      Nana Wang Gaosheng Zhang Huosheng Li Tangfu Xiao . Discussion on the Teaching Reform of Environmental Functional Materials within the Context of “Double First-Class” Initiative: Emphasizing the Integration of Industry, Academia, Research, and Application. University Chemistry, 2024, 39(6): 137-144. doi: 10.3866/PKU.DXHX202312010

    14. [14]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    15. [15]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    16. [16]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    17. [17]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    18. [18]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

Metrics
  • PDF Downloads(284)
  • Abstract views(7284)
  • HTML views(2743)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return