Citation: GONG Hui, KANG Yu, ZHANG Rong, REN Guodong, HOU Xiaoyu, ZHANG Min, LI Lihong, LIU Wen, WANG Haojiang, DIAO Haipeng. Preparation of Nitrogen-Doped Carbon Dots for Highly Sensitive Detection of Amoxicillin[J]. Chinese Journal of Applied Chemistry, ;2020, 37(2): 227-234. doi: 10.11944/j.issn.1000-0518.2020.02.190226 shu

Preparation of Nitrogen-Doped Carbon Dots for Highly Sensitive Detection of Amoxicillin

  • Corresponding author: DIAO Haipeng, diaohp@sxmu.edu.cn
  • Received Date: 23 August 2019
    Revised Date: 16 October 2019
    Accepted Date: 5 November 2019

    Fund Project: the Youth Science Foundation of Shanxi Province 201701D221064the Key Research and Development Projects of Shanxi Province 201703D321015-2Supported by the National Natural Science Foundation of China(No.21705104), the Key Research and Development Projects of Shanxi Province(No.201703D321015-2), and the Youth Science Foundation of Shanxi Province(No.201701D221064)the National Natural Science Foundation of China 21705104

Figures(10)

  • In this paper, the nitrogen-doped carbon dots (NCDs) were synthesized using the natural material dendrobe as the raw material by one-step hydrothermal method. The synthesized carbon dots were characterized by transmission electron microscopy(TEM), X-ray photoelectron spectroscopy(XPS), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible(UV-Vis) absorption spectroscopy and photoluminescence spectroscopy (PL). The experiment results show that NCDs are spherical or quasi-spherical, uniformly dispersed with the size ranges from 1 to 5 nm, which can emit strong blue fluorescence. The surface of the synthesized NCDs is rich in water-soluble groups such as COOH, OH and NH2. The optimal excitation and emission wavelengths of NCDs are 350 and 435 nm, respectively. Meanwhile, the fluorescence emission has good luminescence stability. The fluorescence quantum yield of the carbon dots is as high as 29.19%. The effects of different substances on the fluorescence of NCDs were measured in a buffer solution with pH=7.4. Under the same conditions, only amoxicillin is able to significantly quench the fluorescence of NCDs, indicating the synthesized NCDs can selectively interact with amoxicillin. A sensitive sensor was constructed for detecting amoxicillin by changing the fluorescence intensity of carbon dots. The linear detection range for amoxicillin is from 2.6 to 30 μmol/L and the detection limit is 0.15 μmol/L.
  • 加载中
    1. [1]

      De Baere S, De Backer P. Quantitative Determination of Amoxicillin in Animal Feed Using Liquid Chromatography with Tandem Mass Spectrometric Detection[J]. Anal Chim Acta, 2007,586(1/2):319-325.  

    2. [2]

      Bergamini M F, Teixeira M F S, Dockal E R. Evaluation of Different Voltammetric Techniques in the Determination of Amoxicillin Using a Carbon Paste Electrode Modified with[N, N'-ethylenebis(salicylideneaminato)] Oxovanadium(Ⅳ)[J]. J Electrochem Soc, 2006,153(5):E94-E98.  

    3. [3]

      Shah K, Hassan E, Ahmed F. Novel Fluorene-Based Supramolecular Sensor for Selective Detection of Amoxicillin in Water and Blood[J]. Ecotox Environ Safe, 2017,141:25-29. doi: 10.1016/j.ecoenv.2017.03.003

    4. [4]

      Cohen M L. Epidemiology of Drug Resistance:Implications for a Post-antimicrobial Era[J]. Science, 1992,257(5073):1050-1055. doi: 10.1126/science.257.5073.1050

    5. [5]

      Gonzales R, Bartlett J G, Besser R E. Principles of Appropriate Antibiotic Use for Treatment of Acute Respiratory Tract Infections in Adults:Background, Specific Aims, and Methods[J]. Ann Emerg Med, 2001,37(6):690-697. doi: 10.1067/S0196-0644(01)70087-X

    6. [6]

      Shangguan J, Huang J, He D. Highly Fe3+-Selective Fluorescent Nanoprobe Based on Ultrabright N/P Codoped Carbon Dots and Its Application in Biological Samples[J]. Anal Chem, 2017,89(14):7477-7484. doi: 10.1021/acs.analchem.7b01053

    7. [7]

      Tan J, Zou R, Zhang J. Large-scale Synthesis of N-Doped Carbon Quantum Dots and Their Phosphorescence Properties in a Polyurethane Matrix[J]. Nanoscale, 2016,8(8):4742-4747. doi: 10.1039/C5NR08516K

    8. [8]

      Wang J, Qiu F, Wu H. Fabrication of Fluorescent Carbon Dots-Linked Isophorone Diisocyanate and β-Cyclodextrin for Detection of Chromium Ions[J]. Spectrochim Acta A, 2017,179:163-170. doi: 10.1016/j.saa.2017.02.031

    9. [9]

      HUANG Xiaomei, DENG Xiang. Preparation of New Photoluminescent Carbon Dots and Its Application in Hg2+ Detection[J]. Chinese J Appl Chem, 2019,36(5):603-610.  

    10. [10]

      Luo M, Hua Y, Liang Y. Synthesis of Novel β-cyclodextrin Functionalized S, N Codoped Carbon Dots for Selective Detection of Testosterone[J]. Biosens Bioelectron, 2017,98:195-201. doi: 10.1016/j.bios.2017.06.056

    11. [11]

      WANG Shiqi, TU Yufei, LIU Zhixiao. Microwave Synthesis of Nitrogen-Doped Carbon Dots and Its Application in Detection of Ferric Ions[J]. Chinese J Lumin, 2019,40(6):751-757.  

    12. [12]

      Eda G, Lin Y Y, Mattevi C. Blue Photoluminescence from Chemically Derived Graphene Oxide[J]. Adv Mater, 2010,22(4):505-509. doi: 10.1002/adma.200901996

    13. [13]

      Paredes J I, Villar-Rodil S, Martiínez-Alonso A. Graphene Oxide Dispersions in Organic Solvents[J]. Langmuir, 2008,24(19):10560-10564. doi: 10.1021/la801744a

    14. [14]

      Zhu S, Meng Q, Wang L. Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging[J]. Angew Chem Int Ed, 2013,52(14):3953-3957. doi: 10.1002/anie.201300519

    15. [15]

      Wei J, Zhang X, Sheng Y. Dual Functional Carbon Dots Derived from Cornflour via a Simple One-Pot Hydrothermal Route[J]. Mater Lett, 2014,123:107-111. doi: 10.1016/j.matlet.2014.02.090

    16. [16]

      Wu D, Huang X, Deng X. Preparation of Photoluminescent Carbon Nanodots by Traditional Chinese Medicine and Application as a Probe for Hg2+[J]. Anal Meth, 2013,5(12):3023-3027.  

    17. [17]

      Gedda G, Lee C Y, Lin Y C. Green Synthesis of Carbon Dots from Prawn Shells for Highly Selective and Sensitive Detection of Copper Ions[J]. Sens Actuators B-Chem, 2016,224:396-403. doi: 10.1016/j.snb.2015.09.065

    18. [18]

      Wei J, Shen J, Zhang X. Simple One-Step Synthesis of Water-Soluble Fluorescent Carbon Dots Derived from Paper Ash[J]. RSC Adv, 2013,3(32):13119-13122. doi: 10.1039/c3ra41751d

    19. [19]

      Chen Y, Wu Y, Weng B. Facile Synthesis of Nitrogen and Sulfur Co-doped Carbon Dots and Application for Fe(Ⅲ) Ions Detection and Cell Imaging[J]. Sens Actuators B-Chem, 2016,223:689-696. doi: 10.1016/j.snb.2015.09.081

  • 加载中
    1. [1]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    2. [2]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    3. [3]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    4. [4]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    7. [7]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    8. [8]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    9. [9]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    10. [10]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    11. [11]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    12. [12]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    13. [13]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    14. [14]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    15. [15]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    16. [16]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    17. [17]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    18. [18]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    19. [19]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    20. [20]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

Metrics
  • PDF Downloads(0)
  • Abstract views(338)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return