Recent Advance in the Characterization of Acidic Properties of Zeolites
- Corresponding author: WU Zhijie, zhijiewu@cup.edu.cn Co-first author
Citation:
LIU Meng, WU Zhijie, PAN Tao. Recent Advance in the Characterization of Acidic Properties of Zeolites[J]. Chinese Journal of Applied Chemistry,
;2020, 37(1): 1-15.
doi:
10.11944/j.issn.1000-0518.2020.01.190199
XU Ruren, PANG Wenqin, HUO Qisheng, et al. Molecular Sieves and Porous Materials Chemistry[M]. Beijing:Science Press, 2015(in Chinese).
WU Zhijie. Principle of Energy Conversion Catalysis[M]. China University of Petroleum Press, 2018(in Chinese).
XIANG Shouhe, WAGNG Jingzhong, GAO Feng. Study on L Acid of Hβ Zeolite[J]. Chinese J Catal, 1991,12(5):406-408.
TANG Yi, HUA Weiming, GAO Zi. Framework Structure and Acid Strength of Zeolite[J]. Acta Phys-Chim Sin, 1994,10(12):1116-1120. doi: 10.3866/PKU.WHXB19941212
Wu Y, Emdadi L, Qin D. Quantification of External Surface and Pore Mouth Acid Sites in Unit-Cell Thick Pillared MFI and Pillared MWW Zeolites[J]. Micropor Mesopor Mater, 2017,241:43-51. doi: 10.1016/j.micromeso.2016.12.004
Lad J B, Makkawi Y T. Adsorption of Dimethyl Ether(DME) on Zeolite Molecular Sieves[J]. Chem Eng J, 2014,256:335-346. doi: 10.1016/j.cej.2014.07.001
Ordomsky V V, Murzin V Y, Monakhova Y V. Nature, Strength and Accessibility of Acid Sites in Micro/Mesoporous Catalysts Obtained by Recrystallization of Zeolite BEA[J]. Micropor Mesopor Mater, 2007,105(1/2):101-110.
Corma A, Fornes V, Forni L. 2, 6-Di-Tert-Butyl-Pyridine as a Probe Molecule to Measure External Acidity of Zeolites[J]. J Catal, 1998,179(2):451-458. doi: 10.1006/jcat.1998.2233
Emdadi L, Oh S C, Wu Y. The Role of External Acidity of Meso-/Microporous Zeolites in Determining Selectivity for Acid-Catalyzed Reactions of Benzyl Alcohol[J]. J Catal, 2016,335:165-174. doi: 10.1016/j.jcat.2015.12.021
Hu B, Gay I D. Probing Surface Acidity by 31P Nuclear Magnetic Resonance Spectroscopy of Arylphosphines[J]. Langmuir, 1999,15(2):477-481. doi: 10.1021/la980750a
Emdadi L, Wu Y, Zhu G. Dual Template Synthesis of Meso-and Microporous MFI Zeolite Nanosheet Assemblies with Tailored Activity in Catalytic Reactions[J]. Chem Mater, 2012,26(3):1345-1355.
Liu D, Zhang X, Bhan A. Activity and Selectivity Differences of External Br nsted Acid Sites of Single-Unit-Cell Thick and Conventional MFI and MWW Zeolites[J]. Micropor Mesopor Mater, 2014,200:287-290. doi: 10.1016/j.micromeso.2014.06.029
Chal R, Gerardin C, Bulut M. Overview and Industrial Assessment of Synthesis Strategies Towards Zeolites with Mesopores[J]. ChemCatChem, 2011,3(1):67-81. doi: 10.1002/cctc.201000158
Wu Y, Emdadi L, Wang Z. Textural and Catalytic Properties of Mo Loaded Hierarchical Meso-Microporous Lamellar MFI and MWW Zeolites for Direct Methane Conversion[J]. Appl Catal A, 2014,470:344-354. doi: 10.1016/j.apcata.2013.10.053
Wu Y, Emdadi L, Oh S C. Spatial Distribution and Catalytic Performance of Metal-Acid Sites in Mo/MFI Catalysts with Tunable Meso-Microporous Lamellar Zeolite Structures[J]. J Catal, 2015,323:100-111. doi: 10.1016/j.jcat.2014.12.022
Wu Y, Emdadi L, Schulman E. Overgrowth of Lamellar Silicalite-1 on MFI and BEA Zeolites and Its Consequences on Non-oxidative Methane Aromatization Reaction[J]. Micropor Mesopor Mater, 2017,263:1-10.
Wu Z J, Zhao K Q, Zhang Y. Synthesis and Consequence of Aggregated Nanosized ZSM-5 Zeolite Crystals for Methanol to Propylene Reaction[J]. Ind Eng Chem Res, 2019,58(25):10737-10749. doi: 10.1021/acs.iecr.9b00502
LIU Wenhuan, GUO Peng, SU Ji. Acid Characterization and Acid Catalytic Performance of Titanium Silicate Molecular Sieve TS-1[J]. Chinese J Catal, 2009,30(6):482-484. doi: 10.3321/j.issn:0253-9837.2009.06.002
Niwa M, Katada N. New Method for the Temperature-Programmed Desorption(TPD) of Ammonia Experiment for Characterization of Zeolite Acidity:A Review[J]. Chem Rec, 2014,45(6):432-455.
Bagnasco G. Improving the Selectivity of NH3-TPD Measurements[J]. J Catal, 1996,159(1):249-252. doi: 10.1006/jcat.1996.0085
Hu S, Shang J, Zhang Q. Selective Formation of Propylene from Methanol over High-Silica Nanosheets of MFI Zeolite[J]. Appl Catal A, 2012,445/446:215-220. doi: 10.1016/j.apcata.2012.08.032
Li W, Ma T, Zhang Y F. Facile Control of Inter-crystalline Porosity in the Synthesis of Size-Controlled Mesoporous MFI Zeolites via in-Situ Converting Silica Gel into Zeolite Nanocrystals for Catalytic Cracking[J]. CrystEngComm, 2015,17:5680-5689. doi: 10.1039/C5CE00637F
HU Si, ZHANG Qing, YIN Qi. Catalytic Conversion of Methanol to Propylene over HZSM-5 Modified by NaOH and (NH4)2SiF6[J]. Acta Phys-Chim Sin, 2015,31(7):1374-1382.
Zhang J L, Cao P, Yan H Y. Synthesis of Hierarchical Zeolite Beta with Low Organic Template Content via the Steam-Assisted Conversion Method[J]. Chem Eng J, 2016,291:82-93. doi: 10.1016/j.cej.2016.01.088
Wu Z J, Zhao K Q, Ge S H. Selective Conversion of Glycerol into Propylene:Single-Step versus Tandem Process[J]. ACS Sustainable Chem Eng, 2016,4(8):4192-4207. doi: 10.1021/acssuschemeng.6b00676
Emdadi L, Tran D T, Wu Y. BEA Nanosponge/Ultra-thin Lamellar MFI Prepared in One-Step:Integration of 3D and 2D Zeolites into a Composite for Efficient Alkylation Reactions[J]. Appl Catal A, 2017,530:56-65. doi: 10.1016/j.apcata.2016.11.011
REN Fenfen. Pore Structure, Acidity and Benzylation of Naphthalene over Mesopores Beta Zeolite[D]. Taiyuan: Taiyuan University of Technology, 2017(in Chinese).
XUE Bing, WU Hao, Wen Linzhi. Alkylation of Toluene to p-Xylene Catalyzed by Boric Acid Modified MCM-22 Zeolite[J]. Chem Ind Eng Prog, 2017,36(6):2177-2182.
Kester P M, Miller J T, Gounder R. Ammonia Titration Methods to Quantify Brønsted Acid Sites in Zeolites Substituted with Aluminum and Boron Heteroatoms[J]. Ind Eng Chem Res, 2018,57(19):1081-1096.
Yuta N, Takumi K, Ken-Ichi S. Micropore Diffusivities of NO and NH3 in Cu-ZSM-5 and Their Effect on NH3-SCR[J]. Catal Today, 2019,332:64-68. doi: 10.1016/j.cattod.2018.06.056
Luo J Y, Gao F, Kamasamudram K. New Insights into Cu/SSZ-13 SCR Catalyst Acidity[J]. J Catal, 2017,348:291-299. doi: 10.1016/j.jcat.2017.02.025
Lin C, Janssens T V W, Skoglundh M. Interpretation of NH3-TPD Profiles from Cu-CHA Using First-Principles Calculations[J]. Top Catal, 2019,62:93-99. doi: 10.1007/s11244-018-1095-y
Wakabayashi F, Kondo J, Wada A. FT-IR Studies of the Interaction Between Zeolitic Hydroxyl Groups and Small Molecules.1.Adsorption of Nitrogen on H-Mordenite at Low Temperature[J]. J Phys Chem, 1993,94(47):10761-10768.
Katada N. Analysis and Interpretation of Acidic Nature of Aluminosilicates[J]. Mol Catal, 2018,458:116-126. doi: 10.1016/j.mcat.2017.12.024
HU Si, ZHANG Qing, GONG Yanjun. Deactivation and Regeneration of HZSM-5 Zeolite in Methanol-to-Propylene Reaction[J]. Acta Phys-Chim Sin, 2016,32(7):1785-1794.
Emeis C A. Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts[J]. J Catal, 1993,141(2):347-354. doi: 10.1006/jcat.1993.1145
Wu Y, Zheng L, Emdadi L. Tuning External Surface of Unit-Cell Thick Pillared MFI and MWW Zeolites by Atomic Layer Deposition and Its Consequences on Acid-Catalyzed Reactions[J]. J Catal, 2016,337:177-187. doi: 10.1016/j.jcat.2016.01.031
BI Yunfei, XIA Guofu, HUANG Weiguo. Study on Catalysts for Hydroisomerization-Effect of Acidic Properties[J]. Acta Petrol Sin(Petrol Process Sect), 2017,33(5):873-979. doi: 10.3969/j.issn.1001-8719.2017.05.008
Baertsch C D, Komala K T, Chua Y H. Genesis of Brønsted Acid Sites During Dehydration of 2-Butanol on Tungsten Oxide Catalysts[J]. J Catal, 2002,205(1):44-57. doi: 10.1006/jcat.2001.3426
Macht J, Baertsch C D, May-Lozano M. Support Effects on Brønsted Acid Site Densities and Alcohol Dehydration Turnover Rates on Tungsten Oxide Domains[J]. J Catal, 2004,227(2):479-491. doi: 10.1016/j.jcat.2004.08.014
Liu H, Iglesia E. Effects of Support on Bifunctional Methanol Oxidation Pathways Catalyzed by Polyoxometallate Keggin Clusters[J]. J Catal, 2003,223(1):161-169.
Santiesteban J G, Vartuli J C, Han S. Influence of the Preparative Method on the Activity of Highly Acidic WOx/ZrO2 and the Relative Acid Activity Compared with Zeolites[J]. J Catal, 1997,168(2):431-441. doi: 10.1006/jcat.1997.1658
Knö zinger H. Infrared Spectroscopy as a Probe of Surface Acidity[M]. Elementary Reaction Steps in Heterogeneous Catal. Springer Netherlands, 1993, 398: 267-285.
GoraMarek K, Tarach K, Choi M. 2, 6-Di-Tert-Butylpyridine Sorption Approach to Quantify the External Acidity in Hierarchical Zeolites[J]. J Phys Chem C, 2014,118(23):12266-12274. doi: 10.1021/jp501928k
WANG Bin. The Acidity of Zeolites Tested by the Basic Probe Molecular with Adsorption Infrared Spectroscopy[C]. Beijing Institute of Chemical Technology Youth Scientific and Technological Papers Conference. Beijing, 2008(in Chinese).
Barzetti T, Selli E, Moscotti D. Pyridine and Ammonia as Probes for FTIR Analysis of Solid Acid Catalysts[J]. J Chem Soc, Faraday Trans, 1996,92(8):1401-1407. doi: 10.1039/ft9969201401
Bhan A, Allian A D, Sunley G J. Specificity of Sites within Eight-Membered Ring Zeolite Channels for Carbonylation of Methyls to Acetyls[J]. J Am Chem Soc, 2007,129(16):4919-4924. doi: 10.1021/ja070094d
Bhan A, Iglesia E. A Link Between Reactivity and Local Structure in Acid Catalysis on Zeolites[J]. Acc Chem Res, 2008,41(4):559-567. doi: 10.1021/ar700181t
Gabrienko A A, Danilova I G. Direct Measurement of Zeolite Bronsted Acidity by FTIR Spectroscopy: Solid-State 1H MAS NMR Approach for Reliable Determination of the Integrated Molar Absorption Coefficients[J]. J Phys Chem C, 2018,122:25386-25395. doi: 10.1021/acs.jpcc.8b07429
Huang J, Jiang Y, Marthala V R R. Concentration and Acid Strength of Hydroxyl Groups in Zeolites La, Na-X and La, Na-Y with Different Lanthanum Exchange Degrees Studied by Solid-State NMR Spectroscopy[J]. Micropor Mesopor Mater, 2007,104(1):129-136.
Yin F, Blumenfeld A L, Gruver V. NH3 as a Probe Molecule for NMR and IR Study of Zeolite Catalyst Acidity[J]. J Phys Chem B, 1997,101(10):1824-1830. doi: 10.1021/jp9618542
Zhao R, Zhao Z, Li S. Insights into the Correlation of Aluminum Distribution and Bronsted Acidity in H-Beta Zeolites from Solid-State NMR Spectroscopy and DFT Calculations[J]. J Phys Chem Lett, 2017,8(10):2323-2327. doi: 10.1021/acs.jpclett.7b00711
GAO Xiuzhi, ZHANG Yu, WANG Xiumei. Solid State NMR Study on Acidic Central Structure and Acidity ofDealuminized HY Zeolite[J]. Acta Petrol Sin(Petrol Process Sect), 2012,28(2):180-187.
Holland G P, Cherry B R, Alam T M. 15N Solid-State NMR Characterization of Ammonia Adsorption Environments in 3A Zeolite Molecular Sieves[J]. J Phys Chem B, 2004,108(42):16420-16426. doi: 10.1021/jp047884j
Holland G P, Alam T M. Location and Orientation of Adsorbed Molecules in Zeolites from Solid-State REAPDOR NMR[J]. Phys Chem Chem Phys, 2005,7(8):1739-1742. doi: 10.1039/b418943d
Chu Y Y, Yu Z W, Zheng A M. Acidic Strengths of Bronsted and Lewis Acid Sites in Solid Acids Scaled by 31P NMR Chemical Shifts of Adsorbed Trimethylphosphine[J]. J Phys Chem C, 2011,115(15):7660-7667. doi: 10.1021/jp200811b
Karra M D, Sutovich K J, Mueller K T. NMR Characterization of Bronsted Acid Sites in Faujasitic Zeolites with Use of Perdeuterated Trimethylphosphine Oxide[J]. J Am Chem Soc, 2002,124(6):902-903. doi: 10.1021/ja017172w
Zhao Q, Chen W H, Huang S J. Discernment and Quantification of Internal and External Acid Sites on Zeolites[J]. J Phys Chem B, 2002,106(17):4462-4469. doi: 10.1021/jp015574k
Zheng A, Zhang H, Lu X. Theoretical Predictions of 31P NMR Chemical Shift Threshold of Trimethylphosphine Oxide Absorbed on Solid Acid Catalysts[J]. J Phys Chem B, 2008,112(15):4496-4505. doi: 10.1021/jp709739v
YU Shanqing, TIAN Huiping. Acidity characterization of Rare-Earth-Exchanged Y Zeolite Using 31P MAS NMR[J]. Chinese J Catal, 2014,35(8):1318-1328.
Jiali CHEN , Guoxiang ZHAO , Yayu YAN , Wanting XIA , Qiaohong LI , Jian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408
Yongjie ZHANG , Bintong HUANG , Yueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012
Yiping HUANG , Liqin TANG , Yufan JI , Cheng CHEN , Shuangtao LI , Jingjing HUANG , Xuechao GAO , Xuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
Wenjun Yang , Qiaoling Tan , Wenjiao Xie , Xiaoyu Pan , Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150
Jiajun Lu , Zhehui Liao , Tongxiang Cao , Shifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
Runze Liu , Yankai Bian , Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250
Jingwen Wang , Minghao Wu , Xing Zuo , Yaofeng Yuan , Yahao Wang , Xiaoshun Zhou , Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023
Yang Chen , Peng Chen , Yuyang Song , Yuxue Jin , Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077
Chengyi Xiao , Xiaoli Sun , Chen Zhang , Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069
Zhiwen HUANG , Qi LIU , Jianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184
Kai Yang , Gehua Bi , Yong Zhang , Delin Jin , Ziwei Xu , Qian Wang , Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045
Laiying Zhang , Yinghuan Wu , Yazi Yu , Yecheng Xu , Haojie Zhang , Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054
Xuan Zhou , Yi Fan , Zhuoqi Jiang , Zhipeng Li , Guowen Yuan , Laiying Zhang , Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111